Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Self-attack

Self-attack. When clients belittle themselves or put themselves down because of frustration or disappointment. This often occurs during a GVE or AVE. Stimulus control. A strategy to control or limit exposure to a trigger or cue. Substitute indulgences. Safe alternatives to drug use that reward the client for doing well in recovery. [Pg.284]

If a self-sustained oxidation is carried out under limiting rate conditions, the hydroperoxide provides the new radicals to the system (by reaction 4 or analogues) and is maintained at a low concentration (decomposition rate = generation rate). For these circumstances, the rate equation 9 holds, where n = average number of initiating radicals produced (by any means) per molecule of ROOH decomposed and / = fraction of RH consumed which disappears by ROO attack (25). [Pg.335]

Many of the by-products of microbial metaboHsm, including organic acids and hydrogen sulfide, are corrosive. These materials can concentrate in the biofilm, causing accelerated metal attack. Corrosion tends to be self-limiting due to the buildup of corrosion reaction products. However, microbes can absorb some of these materials in their metaboHsm, thereby removing them from the anodic or cathodic site. The removal of reaction products, termed depolari tion stimulates further corrosion. Figure 10 shows a typical result of microbial corrosion. The surface exhibits scattered areas of localized corrosion, unrelated to flow pattern. The corrosion appears to spread in a somewhat circular pattern from the site of initial colonization. [Pg.268]

Several theories have appeared in the Hterature regarding the mechanism of protection by -PDA antiozonants. The scavenger theory states that the antiozonant diffuses to the surface and preferentially reacts with ozone, with the result that the mbber is not attacked until the antiozonant is exhausted (25,28,29). The protective film theory is similar, except that the ozone—antiozonant reaction products form a film on the surface that prevents attack (28). The relinking theory states that the antiozonant prevents scission of the ozonized mbber or recombines severed double bonds (14). A fourth theory states that the antiozonant reacts with the ozonized mbber or carbonyl oxide (3) in Pig. 1) to give a low molecular weight, inert self-healing film on the surface (3). [Pg.237]

The relinking (14) and self-healing film (3) theories require chemical interaction between the antiozonant and ozonized mbber. The evidence for these interactions is meager (35,36). Overall, there seems to be no clear evidence in the Hterature for PDA derivatives becoming attached to mbber chains as a result of ozone attack. Much fundamental work in this area remains to be done, however. It seems clear at this point that any antiozonant—mbber interaction must be much less important than the scavenging effect of the antiozonant. In summary, the scavenger model is beheved to be the principal mechanism of antiozonant action. Ozone—antiozonant reaction products form a surface film that provides additional protection (37). [Pg.238]

Sihcon carbide is comparatively stable. The only violent reaction occurs when SiC is heated with a mixture of potassium dichromate and lead chromate. Chemical reactions do, however, take place between sihcon carbide and a variety of compounds at relatively high temperatures. Sodium sihcate attacks SiC above 1300°C, and SiC reacts with calcium and magnesium oxides above 1000°C and with copper oxide at 800°C to form the metal sihcide. Sihcon carbide decomposes in fused alkahes such as potassium chromate or sodium chromate and in fused borax or cryohte, and reacts with carbon dioxide, hydrogen, ak, and steam. Sihcon carbide, resistant to chlorine below 700°C, reacts to form carbon and sihcon tetrachloride at high temperature. SiC dissociates in molten kon and the sihcon reacts with oxides present in the melt, a reaction of use in the metallurgy of kon and steel (qv). The dense, self-bonded type of SiC has good resistance to aluminum up to about 800°C, to bismuth and zinc at 600°C, and to tin up to 400°C a new sihcon nitride-bonded type exhibits improved resistance to cryohte. [Pg.465]

Magnesium anodes usually consist of alloys with additions of Al, Zn and Mn. The content of Ni, Fe and Cu must be kept very low because they favor selfcorrosion. Ni contents of >0.001% impair properties and should not be exceeded. The influence of Cu is not clear. Cu certainly increases self-corrosion but amounts up to 0.05% are not detrimental if the Mn content is over 0.3%. Amounts of Fe up to about 0.01% do not influence self-corrosion if the Mn content is above 0.3%. With additions of Mn, Fe is precipitated from the melt which on solidification is rendered harmless by the formation of Fe crystals with a coating of manganese. The addition of zinc renders the corrosive attack uniform. In addition, the sensitivity to other impurities is depressed. The most important magnesium alloy for galvanic anodes is AZ63, which corresponds to the claims in Ref. 22. Alloys AZ31 and M2 are still used. The most important properties of these alloys are... [Pg.191]

In the atmosphere, ozone is attacked by chlorine atoms primarily introduced via polutants. The destruction of ozone is self-sustaining via these reactions ... [Pg.137]

Halopyridines undergo self-quaternization on standing while the less reactive 2-halo isomers do not. However, more is involved here than the relative reactivity at the ring-positions. The reaction rate will depend on the relative riucleophilicity of the attack-ing pyridine-nitrogens (4-chloropyridine is more basic) and on the much lower steric hindrance at the 4-position. Related to this self-quatemization are the reactions of pyridine and picolines as nucleophiles with 4-chloro- and 2-chloro-3-nitropyridines. The 4-isomer (289) is. again the more reactive by 10-30-fold (Table VII, p. 276). [Pg.287]

Nylons, however, are to some extent subject to deterioration by light. This has been explained on the basis of chain breaking and crosslinking. Nylons are liable to attack by mineral acids but are resistant to alkalies. They are difficult to ignite and are self-extinguishing. [Pg.368]

Both share more or less the same merits but also the same disadvantages. The beneficial properties are high OCV (2.12 and 1.85 V respectively) flexibility in design (because the active chemicals are mainly stored in tanks outside the (usually bipolar) cell stack) no problems with zinc deposition in the charging cycle because it works under nearly ideal conditions (perfect mass transport by electrolyte convection, carbon substrates [52]) self-discharge by chemical attack of the acid on the deposited zinc may be ignored because the stack runs dry in the standby mode and use of relatively cheap construction materials (polymers) and reactants. [Pg.206]

In conclusion, the self-condensation of 2-furaldehyde promoted by heat occurs with the formation of di- and trifurylic intermediates. The functionality of the growing chain increases after each oligomerization step until gelation and precipitation of the resin occurs. Thus, the process is non-linear from the onset since the condensation product 4 possesses three sites for further attack, namely the free C-5 position and the two formyl groups. It is interestering to note that while the polycondensation of 2-furfuryl alcohol is essentially linear and cross-linking is due to side reactions, the thermal resinification of 2-furaldehyde is intrinsically non-linear and gel formation occurs at earlier conversions. [Pg.56]

The use of this theory in studies of nonlinear oscillations was suggested in 1929 (by Andronov). At a later date (1937) Krylov and Bogoliubov (K.B.) simplified somewhat the method of attack by a device resembling Lagrange s method of the variation of parameters, and in this form the method became useful for solving practical problems. Most of these early applications were to autonomous systems (mainly the self-excited oscillations), but later the method was extended to... [Pg.349]

Rh(OEP)H reacts with CNR (R = Me, n-Bu,) to give the adduct Rh(OEP)-(H)CNR (which has no parallel in CO chemistry) which then slowly transforms to the formimidoyl insertion product, Rh(OEP)C(H)=NR. The dimer Rh(OEP))2 reacts with CNAr (Ar = 2.6-Cf,H3Mc2) in aqueous benzene to give the carbamoyl product. Rh(OEP)C(0)NHAr (characterized by an X-ray crystal structure) together with the hydride, which it.self reacts further with the isocyanide. This is suggc.sted to form via a cationic carbene intermediate, formed by attack of HiO on coordinated CNAr in concert with disproportionation to Rh(III) and Rh(l). [Pg.305]

The injection device is also an important component in the LC system and has been discussed elsewhere (2,18). One type of injector is analogous to sample delivery in gas chromatography, namely syringe injection through a self-sealing septum. While this injection procedure can lead to good column efficiency, it generally is pressure limited, and the septum material can be attacked by the mobile phase solvent. [Pg.234]

METAL FUME FEVER Non-specific, Self-limiting illness resembling an attack of influenza caused mainly by exposure to fumes of zinc, copper, or magnesium and less frequently due to exposure to other metal fumes. Exposures occur from molten metals, e.g. in smelting, galvanizing, welding. [Pg.15]

Organic peroxides and hydroperoxides decompose in part by a self-induced radical chain mechanism whereby radicals released in spontaneous decomposition attack other molecules of the peroxide.The attacking radical combines with one part of the peroxide molecule and simultaneously releases another radical. The net result is the wastage of a molecule of peroxide since the number of primary radicals available for initiation is unchanged. The velocity constant ka we require refers to the spontaneous decomposition only and not to the total decomposition rate which includes the contribution of the chain, or induced, decomposition. Induced decomposition usually is indicated by deviation of the decomposition process from first-order kinetics and by a dependence of the rate on the solvent, especially when it consists of a polymerizable monomer. The constant kd may be separately evaluated through kinetic measurements carried out in the presence of inhibitors which destroy the radical chain carriers. The aliphatic azo-bis-nitriles offer a real advantage over benzoyl peroxide in that they are not susceptible to induced decomposition. [Pg.113]


See other pages where Self-attack is mentioned: [Pg.264]    [Pg.48]    [Pg.834]    [Pg.833]    [Pg.212]    [Pg.261]    [Pg.264]    [Pg.48]    [Pg.834]    [Pg.833]    [Pg.212]    [Pg.261]    [Pg.235]    [Pg.229]    [Pg.338]    [Pg.368]    [Pg.508]    [Pg.291]    [Pg.9]    [Pg.428]    [Pg.174]    [Pg.958]    [Pg.2]    [Pg.30]    [Pg.908]    [Pg.1061]    [Pg.940]    [Pg.279]    [Pg.302]    [Pg.645]    [Pg.1202]    [Pg.258]    [Pg.143]    [Pg.75]    [Pg.142]    [Pg.267]    [Pg.607]    [Pg.103]   
See also in sourсe #XX -- [ Pg.264 , Pg.284 ]




SEARCH



© 2024 chempedia.info