Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Selectivity mass analyzers

The need for fast, sensitive, and selective mass analyzers that are commonly combined with chromatographic systems has been a major... [Pg.53]

Typical MS/MS configuration. Ions produced from a source (e.g., dynamic FAB) are analyzed by MS(1). Molecular ions (M or [M + H]+ or [M - H]", etc.) are selected in MS(1) and passed through a collision cell (CC), where they are activated by collision with a neutral gas. The activation causes some of the molecular ions to break up, and the resulting fragment ions provide evidence of the original molecular structure. The spectrum of fragment ions is mass analyzed in the second mass spectrometer, MS(2). [Pg.289]

By selecting either a large positive or negative voltage on a plate with a slit in it held above the surface, the desorbed negative or positive ions can be accelerated away from the surface and into a mass analyzer. [Pg.385]

Ion trap analyzer. A mass-resonance analyzer that produces a three-dimensional rotationally symmetric quadrupole field capable of storing ions at selected mass-to-charge (m/z) ratios. [Pg.429]

The most common modes of operation for ms/ms systems include daughter scan, parent ion scan, neutral loss scan, and selected reaction monitoring. The mode chosen depends on the information required. Stmctural identification is generally obtained using daughter or parent ion scan. The mass analyzers commonly used in tandem systems include quadmpole, magnetic-sector, electric-sector, time-of-flight, and ion cyclotron resonance. Some instmments add a third analyzer such as the triple quadmpole ms (27). [Pg.405]

The main advantages of the ms/ms systems are related to the sensitivity and selectivity they provide. Two mass analyzers in tandem significantly enhance selectivity. Thus samples in very complex matrices can be characterized quickly with Htde or no sample clean-up. Direct introduction of samples such as coca leaves or urine into an ms or even a gc/lc/ms system requires a clean-up step that is not needed in tandem mass spectrometry (28,29). Adding the sensitivity of the electron multiplier to this type of selectivity makes ms/ms a powerhil analytical tool, indeed. It should be noted that introduction of very complex materials increases the frequency of ion source cleaning compared to single-stage instmments where sample clean-up is done first. [Pg.405]

Quadrupole analyzer A mass filter that creates a quadrupole field with dc and rf components so that only ions of a selected mass-to-charge are transmitted to the detector. [Pg.184]

We use laser photofragment spectroscopy to study the vibrational and electronic spectroscopy of ions. Our photofragment spectrometer is shown schematically in Eig. 2. Ions are formed by laser ablation of a metal rod, followed by ion molecule reactions, cool in a supersonic expansion and are accelerated into a dual TOE mass spectrometer. When they reach the reflectron, the mass-selected ions of interest are irradiated using one or more lasers operating in the infrared (IR), visible, or UV. Ions that absorb light can photodissociate, producing fragment ions that are mass analyzed and detected. Each of these steps will be discussed in more detail below, with particular emphasis on the ions of interest. [Pg.335]

Figure 3.9 Conceptual view of tandem mass spectrometry with a tandem-inspace triple quadrupole mass analyzer." The first mass analyzer (Ql) selects the precursor ion of interest by allowing only it to pass, while discriminating against all others. The precursor ion is then fragmented, usually by energetic collisions, in the second quadrupole (q2) that is operated in transmissive mode allowing all fragment ions to be collimated and passed into the third quadrupole (Q3). Q3 performs mass analysis on the product ions that compose the tandem mass spectra and are rationalized to a structure. Figure 3.9 Conceptual view of tandem mass spectrometry with a tandem-inspace triple quadrupole mass analyzer." The first mass analyzer (Ql) selects the precursor ion of interest by allowing only it to pass, while discriminating against all others. The precursor ion is then fragmented, usually by energetic collisions, in the second quadrupole (q2) that is operated in transmissive mode allowing all fragment ions to be collimated and passed into the third quadrupole (Q3). Q3 performs mass analysis on the product ions that compose the tandem mass spectra and are rationalized to a structure.
For high-throughput analysis, it is important to increase the specihcity of each bioanalytical method. The enhancement of chromatographic resolution presents various limitations. Better selectivity can be obtained with TOF mass analyzers that routinely provide more than 5000 resolution (full width at half-mass or FWHM). The enhanced selectivity of a TOF MS is very attractive for problems such as matrix suppression and metabolite interference. In one report of quantitative analysis using SRM, TOF appeared less sensitive than triple quadrupole methods but exhibited comparable dynamic range with acceptable precision and accuracy.102... [Pg.328]

A tandem-in-space mass spectrometer consists of an ion source, a precursor ion activation device, and at least two nontrapping mass analyzers. The first mass analyzer is used to select precursor ions within a narrow m/z range. Isolated precursor ions are allowed to enter the ion activation device, for example, a gas-filled collision cell, where they dissociate. Created fragments continue on to the second mass analyzer for analysis. The second mass analyzer can either acquire a full mass fragment spectrum or be set to monitor a selected, narrow, m/z range. In principle the second mass analyzer could be followed by more ion activation devices and mass analyzers for MSn experiments. However, due to rapidly decreasing transmission and increasing experimental... [Pg.91]

Q-switches, in YAG lasers, 14 698 Q-switching technique, 14 618, 673-678 Quadrature techniques in sampling, 26 1010-1011 Quadrupole mass analyzers, 24 109 Quadrupole moment, 1 620-621 selected molecules, 1 621t3 Quadrupoles, 15 661-662 Qualimet... [Pg.778]

Fig. 11.16. Representation of three tandem mass spectrometry (MS/MS) scan modes illustrated for a triple quadrupole instrument configuration. The top panel shows the attributes of the popular and prevalent product ion CID experiment. The first mass filter is held at a constant m/z value transmitting only ions of a single mlz value into the collision region. Conversion of a portion of translational energy into internal energy in the collision event results in excitation of the mass-selected ions, followed by unimolecular dissociation. The spectrum of product ions is recorded by scanning the second mass filter (commonly referred to as Q3 ). The center panel illustrates the precursor ion CID experiment. Ions of all mlz values are transmitted sequentially into the collision region as the first analyzer (Ql) is scanned. Only dissociation processes that generate product ions of a specific mlz ratio are transmitted by Q3 to the detector. The lower panel shows the constant neutral loss CID experiment. Both mass analyzers are scanned simultaneously, at the same rate, and at a constant mlz offset. The mlz offset is selected on the basis of known neutral elimination products (e.g., H20, NH3, CH3COOH, etc.) that may be particularly diagnostic of one or more compound classes that may be present in a sample mixture. The utility of the two compound class-specific scans (precursor ion and neutral loss) is illustrated in Fig. 11.17. Fig. 11.16. Representation of three tandem mass spectrometry (MS/MS) scan modes illustrated for a triple quadrupole instrument configuration. The top panel shows the attributes of the popular and prevalent product ion CID experiment. The first mass filter is held at a constant m/z value transmitting only ions of a single mlz value into the collision region. Conversion of a portion of translational energy into internal energy in the collision event results in excitation of the mass-selected ions, followed by unimolecular dissociation. The spectrum of product ions is recorded by scanning the second mass filter (commonly referred to as Q3 ). The center panel illustrates the precursor ion CID experiment. Ions of all mlz values are transmitted sequentially into the collision region as the first analyzer (Ql) is scanned. Only dissociation processes that generate product ions of a specific mlz ratio are transmitted by Q3 to the detector. The lower panel shows the constant neutral loss CID experiment. Both mass analyzers are scanned simultaneously, at the same rate, and at a constant mlz offset. The mlz offset is selected on the basis of known neutral elimination products (e.g., H20, NH3, CH3COOH, etc.) that may be particularly diagnostic of one or more compound classes that may be present in a sample mixture. The utility of the two compound class-specific scans (precursor ion and neutral loss) is illustrated in Fig. 11.17.
The first mass analyzer was used to select a given m/z value and those ions would be transmitted to the collision region where they would undergo collisional activation. Subsequent decomposition of the excited ions resulted in characteristic fragment ions (with equally characteristic... [Pg.387]

In the past decade, as systems have become simpler to operate, mass spectrometry (MS) has become increasingly popular as a detector for GC. Of all detectors for GC, mass spectrometry, often termed mass selective detector (MSD) in bench-top systems, offers the most versatile combination of sensitivity and selectivity. The fundamentals of MS are discussed elsewhere in this text. Quadrupole (and ion trap, which is a variant of quadrupole) mass analyzers, with electron impact ionization are by far (over 95%) the most commonly used with GC. They offer the benefits of simplicity, small size, rapid scanning of the entire mass range and sensitivity that make an ideal detector for GC. [Pg.471]


See other pages where Selectivity mass analyzers is mentioned: [Pg.120]    [Pg.120]    [Pg.164]    [Pg.282]    [Pg.539]    [Pg.543]    [Pg.405]    [Pg.17]    [Pg.1029]    [Pg.494]    [Pg.316]    [Pg.741]    [Pg.768]    [Pg.831]    [Pg.484]    [Pg.992]    [Pg.1001]    [Pg.58]    [Pg.208]    [Pg.42]    [Pg.66]    [Pg.343]    [Pg.367]    [Pg.56]    [Pg.59]    [Pg.95]    [Pg.95]    [Pg.257]    [Pg.358]    [Pg.356]    [Pg.357]    [Pg.383]    [Pg.393]    [Pg.175]   
See also in sourсe #XX -- [ Pg.260 , Pg.587 ]




SEARCH



Analyzer Selection

Mass analyzer

© 2024 chempedia.info