Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Toluene disproportionation selective, structure-selectivity

The objective of this contribution is to investigate catalytic properties of zeolites differing in their channel systems in transformation of aromatics, i.e. toluene alkylation with isopropyl alcohol and toluene disproportionation. In the former case zeolite structure and acidity is related to the toluene conversion, selectivity to p-cymene, sum of cymenes, and isopropyl/n-propyl toluene ratio. In the latter one zeolite properties are... [Pg.273]

Toluene alkylation with isopropyl alcohol was chosen as the test reaction as we can follow in a detail the effect of zeolite structural parameters on the toluene conversion, selectivity to cymenes, selectivity to para-cymene, and isopropyl/n-propyl ratio. It should be stressed that toluene/isopropyl alcohol molar ratio used in the feed was 9.6, which indicates the theoretical toluene conversion around 10.4 %. As you can see from Fig. 2 conversion of toluene over SSZ-33 after 15 min of T-O-S is 21 %, which is almost two times higher than the theoretical toluene conversion for alkylation reaction. The value of toluene conversion over SSZ-33 is influenced by a high rate of toluene disproportionation. About 50 % of toluene converted is transformed into benzene and xylenes. Toluene conversion over zeolites Beta and SSZ-35 is around 12 %, which is due to a much smaller contribution of toluene disproportionation to the overall toluene conversion. A slight increase in toluene conversion over ZSM-5 zeolite is connected with the fact that desorption and transport of products in toluene alkylation with isopropyl alcohol is the rate controlling step of this reaction [9]... [Pg.277]

Structure-Selectivity Relationship in Xylene Isomerization and Selective Toluene Disproportionation... [Pg.272]

As a result of steric constraints imposed by the channel structure of ZSM-5, new or improved aromatics conversion processes have emerged. They show greater product selectivities and reaction paths that are shifted significantly from those obtained with constraint-free catalysts. In xylene isomerization, a high selectivity for isomerization versus disproportionation is shown to be related to zeolite structure rather than composition. The disproportionation of toluene to benzene and xylene can be directed to produce para-xylene in high selectivity by proper catalyst modification. The para-xylene selectivity can be quantitatively described in terms of three key catalyst properties, i.e., activity, crystal size, and diffusivity, supporting the diffusion model of para-selectivity. [Pg.272]

The paper deals with some new data concerning the state of the metal after reduction and the catalytic functions of zeolite catalysts containing nickel and platinum. By using the molecular sieve selectivity in the hydrogenation of mesitylene it has been proved that metal (platinum) is contained in the volume of the zeolite crystal. The temperature dependence of the formation of nickel crystals was investigated. The aluminosilicate structure and the zeolite composition influence mainly the formation of the metal surface which determines the catalytic activity. In the hydrocracking of cumene and disproportionation of toluene a bifunctional action of catalysts has been established. Hydrogen retarded the reaction. [Pg.458]

The isomerisation of xylenes within H-ZSM-5 provides the textbook example of transition state shape selectivity (Table 8.2). Xylenes isomerise on zeolite H-Y to an equilibrium distribution of o-, m- and p-xylenes within the large cavities. Under the same conditions they also undergo disproportionation to give toluene and a mixture of trimethylbenzenes. This (unwanted) side reaction proceeds via a bimolecular reaction. Over the medium-pore H-ZSM-5, however, only xylenes are observed, enriched in the pnra-isomer by product shape selectivity. Little or no disproportionation is observed. This is a result of transition state selectivity, since there is no space within the ZSM-5 structure for the bimolecular transition state of the disproportionation reaction. ... [Pg.343]


See other pages where Toluene disproportionation selective, structure-selectivity is mentioned: [Pg.276]    [Pg.340]    [Pg.2]    [Pg.236]    [Pg.437]    [Pg.252]    [Pg.273]    [Pg.15]    [Pg.165]    [Pg.266]   


SEARCH



Selective toluene disproportionation

Structural selection

Toluene structure

© 2024 chempedia.info