Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Schrodinger equation, quantum chemistry

Much of quantum chemistry attempts to make more quantitative these aspects of chemists view of the periodic table and of atomic valence and structure. By starting from first principles and treating atomic and molecular states as solutions of a so-called Schrodinger equation, quantum chemistry seeks to determine what underlies the empirical quantum numbers, orbitals, the aufbau principle and the concept of valence used by spectroscopists and chemists, in some cases, even prior to the advent of quantum mechanics. [Pg.7]

Ab initio is a euphemistic term used to characterize a method that is not intended to start at the very beginning, but as close to the beginning as possible. But where is the beginning As far as quantum physics is concerned, in the beginning is the Schrodinger equation. Quantum chemistry has to be more modest. It cannot even start without fundamental assumptions, or rather, simplifications. Here is another famous euphemism ... [Pg.131]

The quantum mechanical methods described in this book are all molecular orbital (MO) methods, or oriented toward the molecular orbital approach ab initio and semiempirical methods use the MO method, and density functional methods are oriented toward the MO approach. There is another approach to applying the Schrodinger equation to chemistry, namely the valence bond method. Basically the MO method allows atomic orbitals to interact to create the molecular orbitals of a molecule, and does not focus on individual bonds as shown in conventional structural formulas. The VB method, on the other hand, takes the molecule, mathematically, as a sum (linear combination) of structures each of which corresponds to a structural formula with a certain pairing of electrons [16]. The MO method explains in a relatively simple way phenomena that can be understood only with difficulty using the VB method, like the triplet nature of dioxygen or the fact that benzene is aromatic but cyclobutadiene is not [17]. With the application of computers to quantum chemistry the MO method almost eclipsed the VB approach, but the latter has in recent years made a limited comeback [18],... [Pg.102]

Such a fundamental theory does exist for chemistry quantum mechanics. The dependence of the property of a compound on its three-dimensional structure is given by the Schrodinger equation. Great progress has been made both in the de-... [Pg.6]

In making certain mathematical approximations to the Schrodinger equation, we can equate derived terms directly to experiment and replace dilTiciilL-to-calculate mathematical expressions with experimental values. In other situation s, we introduce a parameter for a mathematical expression and derive values for that parameter by fitting the results of globally calculated results to experiment. Quantum chemistry has developed two groups of researchers ... [Pg.217]

Quantum mechanics is cast in a language that is not familiar to most students of chemistry who are examining the subject for the first time. Its mathematical content and how it relates to experimental measurements both require a great deal of effort to master. With these thoughts in mind, the authors have organized this introductory section in a manner that first provides the student with a brief introduction to the two primary constructs of quantum mechanics, operators and wavefunctions that obey a Schrodinger equation, then demonstrates the application of these constructs to several chemically relevant model problems, and finally returns to examine in more detail the conceptual structure of quantum mechanics. [Pg.7]

As is often the case in quantum chemistry, we are interested in solutions of the time-independent Schrodinger equation... [Pg.73]

The description of electronic distribution and molecular structure requires quantum mechanics, for which there is no substitute. Solution of the time-independent Schrodinger equation, Hip = Eip, is a prerequisite for the description of the electronic distribution within a molecule or ion. In modern computational chemistry, there are numerous approaches that lend themselves to a reasonable description of ionic liquids. An outline of these approaches is given in Scheme 4.2-1 [1] ... [Pg.152]

Lowdin, P.-O., An Elementary Iteration-Variation Method for Solving the Schrodinger Equation, Technical Note from the Uppsala Quantum Chemistry Group, April 23, 1958. [Pg.322]

Quantum mechanical effects—tunneling and interference, resonances, and electronic nonadiabaticity— play important roles in many chemical reactions. Rigorous quantum dynamics studies, that is, numerically accurate solutions of either the time-independent or time-dependent Schrodinger equations, provide the most correct and detailed description of a chemical reaction. While hmited to relatively small numbers of atoms by the standards of ordinary chemistry, numerically accurate quantum dynamics provides not only detailed insight into the nature of specific reactions, but benchmark results on which to base more approximate approaches, such as transition state theory and quasiclassical trajectories, which can be applied to larger systems. [Pg.2]

Tsoucaris, decided to treat by Fourier transformation, not the Schrodinger equation itself, but one of its most popular approximate forms for electron systems, namely the Hartree-Fock equations. The form of these equations was known before, in connection with electron-scattering problems [13], but their advantage for Quantum Chemistry calculations was not yet recognized. [Pg.141]

The first two chapters serve as an introduction to quantum theory. It is assumed that the student has already been exposed to elementary quantum mechanics and to the historical events that led to its development in an undergraduate physical chemistry course or in a course on atomic physics. Accordingly, the historical development of quantum theory is not covered. To serve as a rationale for the postulates of quantum theory, Chapter 1 discusses wave motion and wave packets and then relates particle motion to wave motion. In Chapter 2 the time-dependent and time-independent Schrodinger equations are introduced along with a discussion of wave functions for particles in a potential field. Some instructors may wish to omit the first or both of these chapters or to present abbreviated versions. [Pg.361]

Most of the AIMD simulations described in the literature have assumed that Newtonian dynamics was sufficient for the nuclei. While this is often justified, there are important cases where the quantum mechanical nature of the nuclei is crucial for even a qualitative understanding. For example, tunneling is intrinsically quantum mechanical and can be important in chemistry involving proton transfer. A second area where nuclei must be described quantum mechanically is when the BOA breaks down, as is always the case when multiple coupled electronic states participate in chemistry. In particular, photochemical processes are often dominated by conical intersections [14,15], where two electronic states are exactly degenerate and the BOA fails. In this chapter, we discuss our recent development of the ab initio multiple spawning (AIMS) method which solves the elecronic and nuclear Schrodinger equations simultaneously this makes AIMD approaches applicable for problems where quantum mechanical effects of both electrons and nuclei are important. We present an overview of what has been achieved, and make a special effort to point out areas where further improvements can be made. Theoretical aspects of the AIMS method are... [Pg.440]


See other pages where Schrodinger equation, quantum chemistry is mentioned: [Pg.363]    [Pg.229]    [Pg.363]    [Pg.229]    [Pg.86]    [Pg.82]    [Pg.12]    [Pg.2158]    [Pg.75]    [Pg.203]    [Pg.139]    [Pg.156]    [Pg.20]    [Pg.46]    [Pg.49]    [Pg.79]    [Pg.253]    [Pg.688]    [Pg.249]    [Pg.441]    [Pg.445]    [Pg.447]    [Pg.492]    [Pg.8]    [Pg.221]    [Pg.2]    [Pg.2]    [Pg.2]    [Pg.107]    [Pg.429]    [Pg.219]    [Pg.220]    [Pg.222]    [Pg.230]    [Pg.247]    [Pg.52]   
See also in sourсe #XX -- [ Pg.92 ]




SEARCH



Quantum Schrodinger

Quantum chemistry

Schrodinger equation conventional quantum chemistry

Schrodinger equation, quantum

© 2024 chempedia.info