Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Schiff bases, 434 aliphatic

Aliphatic and aromatic aldehydes condensed with 2-amino-(62BRP898414), 5-amino- (80AJC1147), or 8-amino-l,2,4-triazolo[l,5-cjpyrimidines (68JOC530) to give the related Schiff bases. Treatment of the 2-amino-5-methyl-l,2,4-triazolo[l,5-c]quinazoline 11 with formaldehyde and piperidine in the presence of acetic acid gave the 2-hydroxymethyl-amino-5-(2-piperidinoethyl) derivative 172. Utilization of aromatic aldehydes and piperidine in this reaction gave the 2-arylideneamino-5-styryl derivatives 173 (68CB2106) (Scheme 67). [Pg.377]

The procedure is modified for the reaction of preformed cyanohydrins with chiral amines39. I11 a further variation, Schiff bases of aliphatic aldehydes with optically active 1-arylalkyl-amines are transformed with liquid hydrogen cyanide to the corresponding a-aminonitrilcs, which, after acid hydrolysis, give the /V-aryUilkylamino acids. Hydrogenation then yields the a-amino acids40 41. [Pg.786]

In 1983, Yamada et al. developed an efficient method for the racemization of amino acids using a catalytic amount of an aliphatic or an aromatic aldehyde [50]. This method has been used in the D KR of amino acids. Figure 4.25 shows the mechanism of the racemization of a carboxylic acid derivative catalyzed by pyridoxal. Racemization takes place through the formation of Schiff-base intermediates. [Pg.104]

As already discussed in Section 7.4, hexamethyidisiiane 857 (which is produced on a technical scale), in the presence of catalytic amounts of tetrabutylammonium fluoride di- or trihydrate in THF, reduces aromatic heterocyclic N-oxides such as pyridine N-oxide 860, quinoline N-oxide 877, or isoquinoline N-oxide 879 to the heterocycles [95] and nitrones to Schiff-bases. Aromatic nitro compounds such as nitrobenzene are reduced analogously to azo compounds such as azobenzene [96]. As mentioned in Section 7.5, secondary aliphatic nitro groups are reduced to oximes. [Pg.277]

Inspired by the results of aromatic-ring hydroxylation from the laboratory of Karlin and co-workers, a few groups provided further examples of such reactivity, including some structurally characterized complexes of modified m-xylyl-based pyridine-donor ligands (Schiff base and non-Schiff base acyclic ligands), as well as aliphatic amine donor ligands (179) (Cu-Cu 2.990 A),169 (180) (Cu-Cu 3.015 A),170 and (181) (Cu-Cu 2.999 A).171 172 A m-xylyl-based ligand system that was used by Mukherjee and co-workers in the formation of complex (181) also resulted in the isolation of a bis(/i-hydroxo)dicopper(II) complex (182) (Cu-Cu 3.004 A).171,172 Casella and co-workers demonstrated that when their dicopper(I) complex... [Pg.779]

The ancillary N-donor and O-donor ligands are also important in the formation and stabilization of oxomanganese clusters. N-donor ligands are especially common ranging and range from bidentate to predesigned polydentate and include aliphatic, cyclic, Schiff base, and polypyridyl systems (Figures 2 and 3). [Pg.15]

Figure 6.15 Polymer-bound Schiff base thiourea catalyst 41 bearing 5-pivaloyl-substitution and its nonimmobilized urea analog 42 optimized for the asymmetric Strecker reaction of aromatic and aliphatic aldimines. Figure 6.15 Polymer-bound Schiff base thiourea catalyst 41 bearing 5-pivaloyl-substitution and its nonimmobilized urea analog 42 optimized for the asymmetric Strecker reaction of aromatic and aliphatic aldimines.
Stereoselective alkylation with aliphatic bromides and iodides of the Schiff bases of tert-butyl glycinate with (—)-(15,25,55)-2-hydroxypinan-3-one or (+)-(lR,2R,5R)-2-hydroxy-pinan-3-one 150 was reported to produce lipidated amino acids as d- and L-enantiomers in 80 to over 90% ee. 151 Similarly, the asymmetric synthesis of a derivative of arachidonic acid (4) has also been reported. The pure enantiomer was obtained via regioselective functionalization of a chirally pure glutamic acid. 152 ... [Pg.356]

Schiff bases from substituted and unsubstituted benzaldehyde and aliphatic or aromatic amines are more stable [6-8]. Benzaldehyde substituents such as nitro, dialkylamino, hydroxyl, methoxyl, or halo have been used [7a-c]. Benzalaniline, m.p. 51°-52°C, is prepared in 87% yield by adding 1.0 mole of aniline to 1.0 mole of benzaldehyde at room temperature in the absence of a solvent. The crude product is added to alcohol [5] in order to induce crystallization [6]. [Pg.383]

Niobium and tantalum halides form adducts with various nitrogen donor ligands including aliphatic and aromatic amines nitriles, Schiffs bases and imidazoles (Table 5). The reactions of MXS with pyridine and related ligands such as bipy or phen depend critically on the reaction conditions. With py at low temperature MX5 (X = Cl, Br) yielded 1 1 adducts that are rapidly reduced to [MX4(py)2] on increasing the temperature, with formation of l-(4-pyridyl)pyridinium halide. Similarly, bipy and phen reduced the metal in MeCN to oxidation state +IV and formed monoadducts of type [MX bipy)] at room temperature, while at 0°C the same reactions yielded [NbCls(bipy)(MeCN)] and [TaX5(bipy)(MeCN)J (X = C1 or Br). NbBrs and Tals formed [MX5(bipy)2], which were formulated as the eight-coordinate [MX4(bipy)2]X.1 Reduction of the metal can however be prevented, even at room temperature,... [Pg.596]

Manganese(III) Schiff base complexes, but not those of iron(III), activate dioxygen in the presence of aliphatic aldehydes.33... [Pg.182]

Imines are formed by the reaction of a primary amine with aldehydes or ketones with the simultaneous removal of water, for example by azeotropic distillation,213 by the addition of anhydrous sodium sulphate,214 by the addition of molecular sieves,215 or by the use of titanium(iv) chloride.216 When one, or both, of the reactants is aromatic, the imine is quite stable and usually known as a Schiff base (see Section 6.5.5, p. 902). In the case of wholly aliphatic reactants the imines tend to decompose or polymerise in these cases their further reaction is carried out without delay. [Pg.782]

Maruoka and coworkers recently developed an efficient, highly diastereo- and enantioselective direct aldol reaction of glycine Schiff base 2 with a wide range of aliphatic aldehydes under mild phase-transfer conditions employing N-spiro chiral quaternary ammonium salt li as a key catalyst, as shown in Table 5.12 [41a]. [Pg.105]


See other pages where Schiff bases, 434 aliphatic is mentioned: [Pg.28]    [Pg.196]    [Pg.235]    [Pg.26]    [Pg.77]    [Pg.223]    [Pg.312]    [Pg.327]    [Pg.346]    [Pg.59]    [Pg.430]    [Pg.383]    [Pg.200]    [Pg.137]    [Pg.478]    [Pg.104]    [Pg.161]    [Pg.188]    [Pg.196]    [Pg.783]    [Pg.59]    [Pg.196]    [Pg.230]    [Pg.235]    [Pg.679]    [Pg.196]    [Pg.230]    [Pg.235]    [Pg.203]    [Pg.275]    [Pg.121]    [Pg.277]    [Pg.456]    [Pg.83]   
See also in sourсe #XX -- [ Pg.412 ]




SEARCH



Aliphatic bases

© 2024 chempedia.info