Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Schiff base formation, aldehydes

Note Such Schiff base formation occurs readily between primary aminoqui-noxqlines and aldehydes, ketones, or their derivatives. 5,6-quinoxalinediamine (144) gave only 6-(p-nitrobenzylideneamino)-5-quinox-alinamine (145) [substrate, MeOH, —5°C, P-O2NC6H4CHOI slowly, 2 h ... [Pg.285]

Schiff base interactions between aldehydes and amines typically are not stable enough to form irreversible linkages. These bonds may be reduced with sodium cyanoborohydride or a number of other suitable reductants (Chapter 2, Section 5) to form permanent secondary amine bonds. However, proteins crosslinked by glutaraldehyde without reduction nevertheless show stabilities unexplainable by simple Schiff base formation. The stability of such unreduced glutaraldehyde conjugates has been postulated to be due to the vinyl addition mechanism, which doesn t depend on the creation of Schiff bases. [Pg.134]

Aldehydes and ketones can react with primary and secondary amines to form Schiff bases, a dehydration reaction yielding an imine (Reaction 45). However, Schiff base formation is a relatively labile, reversible interaction that is readily cleaved in aqueous solution by hydrolysis. The formation of Schiff bases is enhanced at alkaline pH values, but they are still not stable enough to use for crosslinking applications unless they are reduced by reductive amination (see below). [Pg.200]

Aldehyde particles are spontaneously reactive with hydrazine or hydrazide derivatives, forming hydrazone linkages upon Schiff base formation. Reactions with amine-containing molecules, such as proteins, can be done through a reductive amination process using sodium cyanoborohydride (Figure 14.21). [Pg.617]

Wash 10 mg of aldehyde particles 3 times with 10 mM sodium phosphate, pH 7.4 (coupling buffer). Buffers of higher pH value (i.e., carbonate buffer at pH 10) will result in more efficient Schiff base formation with amine-containing molecules than neutral pH conditions. [Pg.617]

The synthesis pathway of quinolizidine alkaloids is based on lysine conversion by enzymatic activity to cadaverine in exactly the same way as in the case of piperidine alkaloids. Certainly, in the relatively rich literature which attempts to explain quinolizidine alkaloid synthesis °, there are different experimental variants of this conversion. According to new experimental data, the conversion is achieved by coenzyme PLP (pyridoxal phosphate) activity, when the lysine is CO2 reduced. From cadeverine, via the activity of the diamine oxidase, Schiff base formation and four minor reactions (Aldol-type reaction, hydrolysis of imine to aldehyde/amine, oxidative reaction and again Schiff base formation), the pathway is divided into two directions. The subway synthesizes (—)-lupinine by two reductive steps, and the main synthesis stream goes via the Schiff base formation and coupling to the compound substrate, from which again the synthetic pathway divides to form (+)-lupanine synthesis and (—)-sparteine synthesis. From (—)-sparteine, the route by conversion to (+)-cytisine synthesis is open (Figure 51). Cytisine is an alkaloid with the pyridone nucleus. [Pg.89]

Schiff s base formation occurs by condensation of the free amine base with aldehyde A in EtOAc/MeOff. The free amine base solution of glycine methyl ester in methanol is generated from the corresponding hydrochloride and triethylamine. Table 4 shows the reaction concentration profiles at 20-25°C. The Schiffs base formation is second order with respect to both the aldehyde and glycine ester. The equilibrium constant (ratio k(forward)/ k(reverse)) is calculated to be 67. [Pg.27]

Schiff base formation occurs normally with 3-aminopyridine (69CR(C)(269)1319> and aldehydes, but imines of 2-aminopyridine, though isolable, are less stable and bis(pyridyl-amino) compounds (e.g. 93) are readily formed. 9-Aminoacridine fails to react with benzal-dehyde. Nitrosobenzenes condense with aminopyridines in alkali (but not in acetic acid) to give azopyridines (Scheme 82). [Pg.343]

Aldehyde 82 was extremely reactive and was best isolated as the hydrate 84a. Indeed, recrystallization of the aldehyde 82 from ethanol gave 3-(l-ethoxy-l-hydroxymethyl)fervenulin 84b, while reaction with ethylene glycol gave the cyclic acetal 76a. The reactivity of the aldehyde 82 was exploited by easy Schiff base formation upon reaction with /i-aminobenzoylglutamic acid, a process that was followed by reduction to give the fervenulin-based folic acid analogue 85 <1996JHC949>. [Pg.1286]

Melt poly condensation is also the most popular method for other thermotropic condensation polymers, including the polyazomethines where the reaction between aromatic aldehydes or ketones and primary amines with elimination of water leads to azomethine (Schiffs base) formation 48). [Pg.89]

The reaction occurs rapidly at alkaline pH (7—10), with higher pH values resulting in better yields due to faster Schiff base formation. To ensure complete conversion of available aldehydes to amines, add the ammonia or diamine compound to the reaction in at least a 10-fold molar excess over the expected number of formyl groups present, Diamines that are commonly used for this process include ethylene diamine, diamino-dipropylamine (3,3 -iminobispropylamine), 1,6-diaminohexane, and the Jeffamine derivative EDR-148 containing a hydrophilic, 10-atom chain (Texaco Chemical Co.). [Pg.130]

Neyroz et al. [97] have covalently linked 2NpOH to phos-phatidylethanolamine moiety by the Schiff-base formation between the NH2 of the phospholipid and the aldehyde moiety of 2-hydroxy-1-naphthaldehyde, followed by selective reduction of the imine to obtain a stable secondary amine. This fluorescent phospholipid easily incorporates into DML vesicle membrane and exhibits the typical behavior of ESPT probes. The emission spectrum of this probe inserted in the liposome is similar to that in ethanol medium and is affected by acetate used as a proton acceptor. [Pg.589]


See other pages where Schiff base formation, aldehydes is mentioned: [Pg.228]    [Pg.40]    [Pg.123]    [Pg.125]    [Pg.129]    [Pg.131]    [Pg.134]    [Pg.173]    [Pg.201]    [Pg.362]    [Pg.385]    [Pg.393]    [Pg.671]    [Pg.855]    [Pg.952]    [Pg.433]    [Pg.462]    [Pg.98]    [Pg.271]    [Pg.807]    [Pg.679]    [Pg.57]    [Pg.726]    [Pg.467]    [Pg.128]    [Pg.134]    [Pg.135]    [Pg.140]    [Pg.161]    [Pg.180]    [Pg.314]    [Pg.544]    [Pg.641]    [Pg.28]    [Pg.228]    [Pg.807]   


SEARCH



Aldehydes Schiff bases

Aldehydes formation

Bases formation

Schiff bases, formation

Schiff formation

© 2024 chempedia.info