Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Schiff base efficiency

A cost-efficient synthesis of foHc acid via Schiff base formation is feasible only if 6-formylpterin (23) is readily available. This compound is prepared by the reaction of 2-bromomalondialdehyde dimethylacetal [59453-00-8] (25) with trianainopyrimidinone (10), followed by acetylation and cleavage of the acetal to give compound (23) in 51% overall yield (38). [Pg.39]

We have already pointed out that the reduction in conjugation efficiency in PCSs is followed by a short-wave shift of the CTC transfer band. This accounts for the fact that poly(schiff base)s and polyazines having conjugated sections separated by oxygen and sulfur atoms are characterized by a short-wave shift of the transfer band of CTC with all acceptors compared to the respective polymers having no interruption of the conjugated chain. This shift may reach 20-50 nm. [Pg.34]

In 1983, Yamada et al. developed an efficient method for the racemization of amino acids using a catalytic amount of an aliphatic or an aromatic aldehyde [50]. This method has been used in the D KR of amino acids. Figure 4.25 shows the mechanism of the racemization of a carboxylic acid derivative catalyzed by pyridoxal. Racemization takes place through the formation of Schiff-base intermediates. [Pg.104]

In 2000, Gennaii et al. discovered a new family of chiral Schiff-base ligands, with the general structure, Af-alkyl-p-(A -salicylideneamino)alkanesulfonamide, depicted in Scheme 2.28. These ligands were successfully implicated in the copper-catalysed conjugate addition of ZnEt2 to cyclic enones (Scheme 2.28) and, less efficiently, to acyclic enones such as benzalacetone (50% ee) or chalcone... [Pg.95]

Formaldehyde fixes proteins in tissue by reacting with basic amino acids— such as lysine,5 7—to form methylol adducts. These adducts can form crosslinks through Schiff base formation. Both intra- and intermolecular cross-links are formed,8 which may destroy enzymatic activity and often immunoreactiv-ity. These formaldehyde-induced modifications reduce protein extraction efficiency and may also lead to the misidentification of proteins during proteomic analysis. [Pg.236]

The excellent reducing properties of potassium tetracarbonylhydrido-ferrate have been used to good effect in providing an efficient general piperidine synthesis from alkyl and aryl amines and glutaraldehyde210 (Scheme 138). The reaction probably proceeds via reduction of intermediate Schiff bases and cyclization via the iminium salt. [Pg.381]

Wash 10 mg of aldehyde particles 3 times with 10 mM sodium phosphate, pH 7.4 (coupling buffer). Buffers of higher pH value (i.e., carbonate buffer at pH 10) will result in more efficient Schiff base formation with amine-containing molecules than neutral pH conditions. [Pg.617]

In a fume hood, add 10 pi of 5M sodium cyanoborohydride (Sigma) per ml of reaction solution. Caution Cyanoborohydride is extremely toxic. All operations should be done with care in a fume hood. Also, avoid any contact with the reagent, as the 5M solution is prepared in IN NaOH. The addition of a reductant is necessary for stabilization of the Schiff bases formed between an amine-containing protein and the aldehydes on the antibody. For coupling to a hydrazide-activated protein, however, most protocols do not include a reduction step. Even so, hydrazone linkages may be further stabilized by cyanoborohydride reduction. The addition of a reductant during hydrazide/aldehyde reactions also increases the efficiency and yield of the reaction. [Pg.805]

Proteins may be modified with oxidized dextran polymers under mild conditions using sodium cyanoborohydride as the reducing agent. The reaction proceeds primarily through e-amino groups of lysine located at the surface of the protein molecules. The optimal pH for the reductive amination reaction is an alkaline environment between pH 7 and 10. The rate of reaction is greatest at pH 8-9 (Kobayashi and Ichishima, 1991), reflecting the efficiency of Schiff base formation at this pH. [Pg.952]

In 1976, McCapra and Burford [110] studied CL reactions of Schiff bases, proposing the mechanism shown in Figure 12. Although the efficiency of the CL reaction is high, a strong base is needed furthermore, the reaction takes place... [Pg.21]

Schiff bases with intramolecular charge transfer complexes such as 2,3-bis[(4-diethylamino-2-hydroxybenzylidene)amino]but-2-enedinitrile zinc (II) (BDPMB-Zn, 187) emit red fluorescence with fluorescent quantum yields up to 67%. OLEDs with a structure of ITO/TPD/ TPD BDPMB-Zn/Alq3 BDPMB-Zn/Alq3/Mg-Ag showed very bright saturated red emission with CIE (0.67, 0.32) with a luminance of 2260 cd/m2 at 20 V and a current efficiency of 0.46 cd/A (at 20 mA/cm2). In addition, the EL spectra do not change with the doping concentration in the range of 0.5—3% [229]. [Pg.349]

Ring opening of meso aziridines has also been investigated. Jacobsen and coworkers found that tridentate Schiff base Cr(III) complex 62 is efficient at inducing good levels of enantioselectivity in the azidolysis of aziridines 60 [Eq. (10.15)]. Alkyl-substituted aziridines were found to work best with the electron-deficient dinitrophenylmethyl providing optimal results ... [Pg.283]

Recently, N,N,0-tridentate Schiff-based zinc alkoxide complexes 52a-53e have been developed by our group [76]. All complexes efficiently initiate the polymerization of L-lactide at 25 °C with >90% conversion within 30-240 min, with only one exception, 52c which is inactive. The polymerization was well-controlled (PDI = 1.04—1.09) and showed that the reactivity decreases with an electron-withdrawing... [Pg.237]


See other pages where Schiff base efficiency is mentioned: [Pg.323]    [Pg.185]    [Pg.277]    [Pg.258]    [Pg.345]    [Pg.79]    [Pg.608]    [Pg.971]    [Pg.175]    [Pg.652]    [Pg.902]    [Pg.404]    [Pg.134]    [Pg.135]    [Pg.150]    [Pg.173]    [Pg.232]    [Pg.363]    [Pg.671]    [Pg.802]    [Pg.890]    [Pg.912]    [Pg.430]    [Pg.191]    [Pg.317]    [Pg.84]    [Pg.199]    [Pg.199]    [Pg.202]    [Pg.205]    [Pg.272]    [Pg.211]    [Pg.67]    [Pg.1533]    [Pg.219]    [Pg.258]    [Pg.147]   
See also in sourсe #XX -- [ Pg.912 ]

See also in sourсe #XX -- [ Pg.582 ]

See also in sourсe #XX -- [ Pg.582 ]




SEARCH



© 2024 chempedia.info