Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Scandium aldolate

High catalytic turnover caused by hydrolysis of scandium aldolates... [Pg.253]

It turned out that the dodecylsulfate surfactants Co(DS)i Ni(DS)2, Cu(DS)2 and Zn(DS)2 containing catalytically active counterions are extremely potent catalysts for the Diels-Alder reaction between 5.1 and 5.2 (see Scheme 5.1). The physical properties of these micelles have been described in the literature and a small number of catalytic studies have been reported. The influence of Cu(DS)2 micelles on the kinetics of quenching of a photoexcited species has been investigated. Interestingly, Kobayashi recently employed surfactants in scandium triflate catalysed aldol reactions". Robinson et al. have demonshuted that the interaction between metal ions and ligand at the surface of dodecylsulfate micelles can be extremely efficient. ... [Pg.139]

Moreover, a new type of catalyst, scandium tris(dodecyl sulfate) [Sc(03S0Ci2H25)3,Sc(DS)3] has been developed.62. The catalyst (a Lewis Acid-Surfactant Combined Catalyst, LASC) acts both as a catalyst and as a surfactant, and aldol reactions proceed smoothly in the presence of a catalytic amount of Sc(DS)3 in water, without using any organic solvents (Scheme 16). [Pg.405]

Scandium triflate (Sc(OTf)3) was also found to be an effective catalyst in aldol reactions in aqueous media1131 In many cases, SdOTf)3 is more active than Yb(OTf)3, as expected from the smaller ionic radius ofSdffl). [Pg.6]

With these results in hand, we have next introduced new types of Lewis acids, e.g scandium tris(-dodecyl sulfate) (4a) and scandium trisdodecanesul-fonate (5a) (Chart 1).[1S1 These Lewis acid-surfactant-combined catalysts (LASCs) were found to form stable colloidal dispersions with organic substrates in water and to catalyze efficiently aldol reactions of aldehydes with very water-labile silyl enol ethers. [Pg.7]

During our investigations of the reactions mediated by LASCs, we have found that addition of a small amount of a Bronsted acid dramatically increased the rate of the aldol reaction (Eq. 5).[191 This cooperative effect of a LASC and an added Bronsted acid was also observed in the allylation ofbenzalde-hyde with tetraallyltin in water.1201 Although, from a mechanistic point of view, little is known about the real catalytic function of scandium and proton, this cooperative effect of a Lewis acid and a Bronsted acid provides a new methodology for efficient catalytic systems in synthetic chemistry. [Pg.8]

S. Kobayashi, T. Wakabayashi, Scandium Tridodecyl-sulfate (STDS). A New Type of Lewis Add That Forms Stable Dispersion Systems with Organic Substrates in Water and Accderates Aldol Readions Much Faster in Water Than in Organic Solvents Tetrahedron Lett. 1998, 39, 5389-5392... [Pg.12]

Fig. 13). The cross-linked scandium-modified dendrimer was tested in a number of Lewis acid-catalyzed reactions, including Mukaiyama aldol additions to aldehydes and aldimines, Diels-Alder reactions, and Friedel-Crafts acylations. The dendritic catalyst was recovered by a simple filtration. The Mukaiyama aldol... [Pg.125]

In the Mukaiyama aldol additions of trimethyl-(l-phenyl-propenyloxy)-silane to give benzaldehyde and cinnamaldehyde catalyzed by 7 mol% supported scandium catalyst, a 1 1 mixture of diastereomers was obtained. Again, the dendritic catalyst could be recycled easily without any loss in performance. The scandium cross-linked dendritic material appeared to be an efficient catalyst for the Diels-Alder reaction between methyl vinyl ketone and cyclopentadiene. The Diels-Alder adduct was formed in dichloromethane at 0°C in 79% yield with an endo/exo ratio of 85 15. The material was also used as a Friedel-Crafts acylation catalyst (contain-ing7mol% scandium) for the formation of / -methoxyacetophenone (in a 73% yield) from anisole, acetic acid anhydride, and lithium perchlorate at 50°C in nitromethane. [Pg.126]

Scandium(III) and lutetium(ni)133 and zinc134 complexes of C2-symmetric pyri-dine-bis(oxazoline) (PYBOX) ligands are highly effective enantioselective catalysts of Mukaiyama aldol reactions. [Pg.18]

CO2-PEG system is also effective for the scandium-catalyzed aldol reactions, and poly(ethylene glycol) dimethyl ether (PEG(OMe)2, MW = 500) is more effective than PEG (Scheme 3.12) [57]. Emulsions in C02-PEG(0Me)2 medium are observed when the concentration of the additive is 1 g/L. Not only benzal-dehyde but also substituted aromatics, aliphatic, and a, /]-unsaturated aldehydes react smoothly, and various silicon enolates derived from a ketones, esters, and thioesters also react well to afford the corresponding aldol adducts in high yields. [Pg.26]

Oxasilacyclopentenes were shown to be competent substrates for a scandium triflate-catalyzed Mukaiyama aldol process (Scheme 7.35).104 Exposure of silacy-clopentene 121 and benzaldehyde to substoichiometric amounts of scandium triflate produced ketone 122 diastereoselectively.105 This ketone was proposed to form by addition of enolate 123, resulting from desilylation of 121,106 to benzaldehyde. A 1,3-Brook rearrangement then afforded 122 from 124.107 This ketone could be further functionalized through lithium aluminum hydride reduction followed by deprotection to afford triol 125 containing four contiguous stereocenters. Thus, the molecular complexity of silyloxyalkynes can be increased dramatically in just three operations. [Pg.206]

The surfactant-aided Lewis acid catalysis was first demonstrated in the model reaction shown in Table 13.1 [22]. While the reaction proceeded sluggishly in the presence of 10 mol% scandimn triflate (ScfOTOs) in water, a remarkable enhancement of the reactivity was observed when the reaction was carried out in the presence of 10 mol% Sc(OTf)3 in an aqueous solution of sodium dodecyl sulfate (SDS, 20 mol%, 35 mM), and the corresponding aldol adduct was obtained in high yield. It was found that the type of surfactant influenced the yield, and that Triton X-100, a non-ionic surfactant, was also effective in the aldol reaction (but required longer reaction time), while only a trace amount of the adduct was detected when using a representative cationic surfactant, cetyltrimethylammonium bromide (CTAB). The effectiveness of the anionic surfactant is attributed to high local concentration of scandium cation on the surfaces of dispersed organic phases, which are surroimded by the surfactant molecules. [Pg.273]

Rare earth metal triflates are recognized as a very efficient Lewis acid catalysts of several reactions including the aldol reaction, the Michael reaction, allylation, the Diels-Alder reaction, the Friedel-Crafts reaction, and glycosylation [110]. A polymer-sup-ported scandium catalyst has been developed and used for quinoline library synthesis (Sch. 8) [111], because lanthanide triflates were known to be effective in the synthesis of quinolines from A-arylimines [112,113]. This catalyst (103) was readily prepared from poly(acrylonitrile) 100 by chemical modification. A variety of combinations of aldehydes, amines, and olefins are possible in this reaction. Use of the polymer-supported catalyst has several advantages in quinoline library construction. [Pg.975]

Sc(() l f) ( is an effective catalyst of the Mukaiyama aldol reaction in both aqueous and non-aqueous media (vide supra). Kobayashi et al. have reported that aqueous aldehydes as well as conventional aliphatic and aromatic aldehydes are directly and efficiently converted into aldols by the scandium catalyst [69]. In the presence of a surfactant, for example sodium dodecylsulfate (SDS) or Triton X-100, the Sc(OTf)3-catalyzed aldol reactions of SEE, KSA, and ketene silyl thioacetals can be performed successfully in water wifhout using any organic solvent (Sclieme 10.23) [72]. They also designed and prepared a new type of Lewis acid catalyst, scandium trisdodecylsulfate (STDS), for use instead of bofh Sc(OTf) and SDS [73]. The Lewis acid-surfactant combined catalyst (LASC) forms stable dispersion systems wifh organic substrates in water and accelerates fhe aldol reactions much more effectively in water fhan in organic solvents. Addition of a Bronsted acid such as HCl to fhe STDS-catalyzed system dramatically increases the reaction rate [74]. [Pg.424]

However, a catalyst made by microencapsulating scandium triflate in polystyrene was easy to recover and reuse with no loss in activity by filtration. In the imino aldol reaction (6.11), its activity was greater than that of the unencapsulated counterpart, maintaining activity (90% yields) after seven cycles 55 (Many Lewis acids do not work well in this reaction.)... [Pg.141]

Quite recently, it has been found that scandium triflate (Sc(OTf)rcatalyzed aldol reactions of silyl enol ethers with aldehydes can be successfully carried out in micellar systems [24], While the reactions proceeded sluggishly in pure water (without organic solvents), remarkable enhancement of the reactivity was observed in the presence of a small amount of a surfactant (cf. Section 4.5). [Pg.92]

Scandium triflate (Sc(OTf)3) was found to be an effective catalyst in the aldol reactions (Kobayashi et al. 1993b). The activities of various triflate catalysts were evaluated in the aldol reaction of 1-trimethylsiloxycyclohexene (2) with benzaldehyde in dichloromethane (table 7). While the reaction scarcely proceeded at -78°C in the presence of Yb(OTf)3 or Y(OTf)3, the aldol adduct was obtained in an 81% yield in the presence of Sc(OTf)3. Obviously, Sc(OTf)3 is more active than Y(OTf)3 or Yb(OTf)3 in this case. [Pg.325]

Scandium triflate-catalyzed aldol reactions of silyl enol ethers with aldehyde were successfully carried out in micellar systems and encapsulating systems. While the reactions proceeded sluggishly in water alone, strong enhancement of the reactivity was observed in the presence of a small amount of a surfactant. The effect of surfactant was attributed to the stabiMzation of enol silyl ether by it. Versatile carbon-carbon bondforming reactions proceeded in water without using any organic solvents. Cross-linked Sc-containing dendrimers were also found to be effective and the catalyst can be readily recycled without any appreciable loss of catalytic activity.Aldol reaction of 1-phenyl-l-(trimethylsilyloxy) ethylene and benzaldehyde was also conducted in a gel medium of fluoroalkyl end-capped 2-acrylamido-2-methylpropanesulfonic acid polymer. A nanostmctured, polymer-supported Sc(III) catalyst (NP-Sc) functions in water at ambient temperature and can be efficiently recycled. It also affords stereoselectivities different from isotropic solution and solid-state scandium catalysts in Mukaiyama aldol and Mannich-type reactions. [Pg.254]


See other pages where Scandium aldolate is mentioned: [Pg.335]    [Pg.274]    [Pg.274]    [Pg.335]    [Pg.274]    [Pg.274]    [Pg.113]    [Pg.314]    [Pg.273]    [Pg.348]    [Pg.306]    [Pg.1352]    [Pg.306]    [Pg.273]    [Pg.337]    [Pg.549]    [Pg.19]    [Pg.67]    [Pg.163]    [Pg.89]    [Pg.629]    [Pg.32]    [Pg.329]    [Pg.272]    [Pg.284]   
See also in sourсe #XX -- [ Pg.274 ]

See also in sourсe #XX -- [ Pg.274 ]




SEARCH



Aldehydes aldol reactions, silyl enol ethers, scandium

Scandium triflate-catalyzed aldol reactions

Silyl enolates, aldol reactions, scandium

© 2024 chempedia.info