Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Scalarization approach

When using a conserved scalar approach with the equilibrium assumption, it is necessary to carry out computations of (1) equilibrium composition of gas from... [Pg.216]

The e-constraint and weighting methods belong to a posteriori methods using the scalarization approach. These methods convert an MOO problem into a SOO problem, which can then be solved by a suitable method to find one Pareto-optimal solution. A series of such SOO problems will have to be solved to find the other Pareto-optimal solutions. See Chapter 6 for a discussion of the weighting and -constraint methods, their properties and relative merits. [Pg.9]

A number of approaches are available for solving MOO problems (Rangaiah, 2009). One common approach (known as scalarization) is to transform the MOO problem into a SOO problem, which can then be solved using established SOO methods. Solution of the resulting SOO problem gives one Pareto-optimal solution, and hence the SOO problem has to be solved many times for obtaining other Pareto-optimal solutions. Two techniques for the scalarization approach are weighted sum and e-constraint methods. [Pg.110]

For simulating coupled fluid flow and temperature fields with LBM, several approaches are being in use as summarized by Schmidt [17]. With the Passive-Scalar Approach the temperature distribution is calculated by solving a second Lattice-Boltzmann equation for energy conservation [18]. The disadvantage of this method is that although the temperature field is affected by the flow, the flow field is not influenced by the temperature field. Thereby, buoyancy driven flows may not be simulated (e.g. natural convection flow). [Pg.351]

A completely difierent approach to scattering involves writing down an expression that can be used to obtain S directly from the wavefunction, and which is stationary with respect to small errors in die waveftmction. In this case one can obtain the scattering matrix element by variational theory. A recent review of this topic has been given by Miller [32]. There are many different expressions that give S as a ftmctional of the wavefunction and, therefore, there are many different variational theories. This section describes the Kohn variational theory, which has proven particularly useftil in many applications in chemical reaction dynamics. To keep the derivation as simple as possible, we restrict our consideration to potentials of die type plotted in figure A3.11.1(c) where the waveftmcfton vanishes in the limit of v -oo, and where the Smatrix is a scalar property so we can drop the matrix notation. [Pg.968]

A third approach is suggested by Hugo s formulation of material balances at the limit of bulk diffusion control, described in Section 11.3. Hugo found expressions for the fluxes by combining the stoichiometric conditions and the Stefan-Maxvell relations, and this led to no inconsistencies since there are only n - 1 independent Stefan-Maxwell relations for the n fluxes. An analogous procedure can be followed when the diffusion is of intermediate type, using the dusty gas model equations in the form (5.10) and (5.11). Equations (5.11), which have the following scalar form ... [Pg.135]

Field variables identified by their magnitude and two associated directions are called second-order tensors (by analogy a scalar is said to be a zero-order tensor and a vector is a first-order tensor). An important example of a second-order tensor is the physical function stress which is a surface force identified by magnitude, direction and orientation of the surface upon which it is acting. Using a mathematical approach a second-order Cartesian tensor is defined as an entity having nine components T/j, i, j = 1, 2, 3, in the Cartesian coordinate system of ol23 which on rotation of the system to ol 2 3 become... [Pg.258]

Two approaches to this equation have been employed. (/) The scalar product is formed between the differential vector equation of motion and the vector velocity and the resulting equation is integrated (1). This is the most rigorous approach and for laminar flow yields an expHcit equation for AF in terms of the velocity gradients within the system. (2) The overall energy balance is manipulated by asserting that the local irreversible dissipation of energy is measured by the difference ... [Pg.109]

The discrete-time solution of the state equation may be considered to be the vector equivalent of the scalar difference equation method developed from a z-transform approach in Chapter 7. [Pg.244]

This study investigates the hydrodynamic behaviour of an aimular bubble column reactor with continuous liquid and gas flow using an Eulerian-Eulerian computational fluid dynamics approach. The residence time distribution is completed using a numerical scalar technique which compares favourably to the corresponding experimental data. It is shown that liquid mixing performance and residence time are strong functions of flowrate and direction. [Pg.669]

All calculations are scalar relativistic calculations using the Douglas-Kroll Hamiltonian except for the CC calculations for the neutral atoms Ag and Au, where QCISD(T) within the pseudopotential approach was used [99], CCSD(T) results for Ag and Au are from Sadlej and co-workers, and Cu and Cu from our own work, using an uncontracted (21sl9plld6f4g) basis set for Cu [6,102] and a full active orbital space. [Pg.193]

However, there also exists a third possibility. By using a famous relation due to Dirac, the relativistic effects can be (in a nonunique way) divided into spin-independent and spin-dependent terms. The former are collectively called scalar relativistic effects and the latter are subsumed under the name spin-orbit coupling (SOC). The scalar relativistic effects can be straightforwardly included in the one-electron Hamiltonian operator h. Unless the investigated elements are very heavy, this recovers the major part of the distortion of the orbitals due to relativity. The SOC terms may be treated in a second step by perturbation theory. This is the preferred way of approaching molecular properties and only breaks down in the presence of very heavy elements or near degeneracy of the investigated electronic state. [Pg.148]

A comparison of anisotropic Fe HFCs with the experimental results shows good agreement between theory and experiment for the ferryl complexes and reasonable agreement for ferrous and ferric complexes. Inspection reveals that the ZORA corrections are mostly small ( 0.1 MHz) but can approach 2 MHz and improve the agreement with the experiment. The SOC contributions are distinctly larger than the scalar-relativistic corrections for the majority of the investigated iron complexes. They can easily exceed 20%. [Pg.180]

If a vector it is a function of a single scalar quantity s, the curve traced as a function of s by its terminus, with respect to a fixed origin, can be represented as shown in Fig. 8. Within the interval As the vector AR = R2 - Ri is in the direction of the secant to the curve, which approaches the tangent in the limit as As - 0. Tins argument corresponds to that presented in Section 2.3 and illustrated in Fig. 4 of that section. In terms of unit vectors in a Cartesian coordinate system... [Pg.42]

However, in all the rest of their approach, Robertson and Yarwood consider the slow mode Q as a scalar obeying simply classical mechanics, because they neglect the noncommutativity of Q with its conjugate momentum P. As a consequence, the logic of their approach is to consider the fluctuation of the slow mode as obeying classical statistical mechanics and not quantum statistical mechanics. Thus we write, in place of Eq. (138), the corresponding classical formula ... [Pg.291]

The CFD model developed above is an example of a moment closure. Unfortunately, when applied to reacting scalars such as those considered in Section III, moment closures for the chemical source term are not usually accurate (Fox, 2003). An alternative approach that yields the same moments can be formulated in terms of a presumed PDF method (Fox, 1998). Here we will consider only the simplest version of a multi-environment micromixing model. Readers interested in further details on other versions of the model can consult Wang and Fox (2004). [Pg.248]

The NDF is very similar to the PDFs introduced in the previous section to describe turbulent reacting flows. However, the reader should not confuse them and must keep in mind that they are introduced for very different reasons. The NDF is in fact an extension of the finite-dimensional composition vector laminar flow where the PDFs are not needed, the NDF still introduces an extra dimension (1) to the problem description. The choice of the state variables in the CFD model used to solve the PBE will depend on how the internal coordinate is discretized. Roughly speaking (see Ramkrishna (2000) for a more complete discussion), there are two approaches that can be employed ... [Pg.274]

The Reynolds-averaged approach is widely used for engineering calculations, and typically includes models such as Spalart-Allmaras, k-e and its variants, k-co, and the Reynolds stress model (RSM). The Boussinesq hypothesis, which assumes pt to be an isotropic scalar quantity, is used in the Spalart-Allmaras model, the k-s models, and the k-co models. The advantage of this approach is the relatively low computational cost associated with the computation of the turbulent viscosity, fit. For the Spalart-Allmaras model, one additional transport equation representing turbulent viscosity is solved. In the case of the k-e and k-co models, two additional transport equations for the turbulence kinetic energy, k, and either the turbulence dissipation rate, s, or the specific dissipation rate, co, are solved, and pt is computed as a function of k and either e or co. Alternatively, in the RSM approach, transport equations can be solved for each of the terms in the Reynolds stress tensor. An additional scale-determining equation (usually for s) is also required. This means that seven additional transport equations must be solved in 3D flows. [Pg.319]


See other pages where Scalarization approach is mentioned: [Pg.266]    [Pg.9]    [Pg.11]    [Pg.157]    [Pg.158]    [Pg.266]    [Pg.452]    [Pg.266]    [Pg.9]    [Pg.11]    [Pg.157]    [Pg.158]    [Pg.266]    [Pg.452]    [Pg.405]    [Pg.138]    [Pg.313]    [Pg.314]    [Pg.283]    [Pg.457]    [Pg.673]    [Pg.681]    [Pg.157]    [Pg.238]    [Pg.72]    [Pg.177]    [Pg.194]    [Pg.215]    [Pg.216]    [Pg.179]    [Pg.171]    [Pg.222]    [Pg.53]    [Pg.28]    [Pg.192]    [Pg.497]    [Pg.192]    [Pg.214]    [Pg.191]   
See also in sourсe #XX -- [ Pg.110 ]




SEARCH



Scalar

© 2024 chempedia.info