Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sandstone/surfactant chemical

Sandstone rock surfaces are normally highly water-wet. These surfaces can be altered by treatment with solutions of chemical surfactants or by asphaltenes. Increasing the pH of the chemical treating solution decreases the water wettability of the sandstone surface and, in some cases, makes the surface medium oil-wet [1644]. Thus the chemical treatment of sandstone cores can increase the oil production when flooded with carbon dioxide. [Pg.213]

T. Austad, S. Ekrann, I. Fjelde, and K. Taugbol. Chemical flooding of oil reservoirs Pt 9 Dynamic adsorption of surfactant onto sandstone cores from injection water with and without polymer present. Colloids Surfaces, Sect A, 127(l-3) 69-82, 1997. [Pg.353]

Figure 5 shows the results of a typical surfactant transport study in a 2 ft long Berea sandstone core. The AEGS 25-12 surfactant, injected at 0.05 wt%, had a low loss on Berea sandstone of 0.008 meq/100 gm rock compared to -0.05 meq/100 gm for typical petroleum sulfonates used in chemical flooding. Surfactant breakthrough occurred at 0.62 PV (Sorw =0.38 PV). The surfactant concentration is consistent with about 10% transport with the brine front. Surfactant loss and transport were monitored using the hyamine titration technique. [Pg.348]

Almost all chemical EOR applications have been in sandstone reservoirs, except a few stimulation projects and a few that have not been published have been in carbonate reservoirs. One reason for fewer applications in carbonate reservoirs is that anionic surfactants have high adsorption in carbonates. Another reason is that anhydrite often exists in carbonates, which causes precipitation and high alkaline consumption. Clays also cause high surfactant and polymer adsorption and high alkaline consumption. Therefore, clay contents must be low for a chemical EOR application to be effective. [Pg.9]

Salinity is essential for all chemical processes. It directly affects polymer viscosity, and it determines the type of microemulsion a surfactant can form. Salinity effects in waterflooding, in both sandstone and carbonate reservoirs, have recently drawn research interest. This chapter briefly discusses sahnity and ion exchange. At the end of this chapter, the sahnity effects on waterflooding in sandstone and carbonate reservoirs are summarized. [Pg.51]

Hanna, H.S., Somasundaran, P, 1977. Physico-chemical aspects of adsorption at solid/liquid interfaces, 11 Mahogany sulfonate/Berea sandstone, kaolinite. In Shah, D.O., Schechter, R.S. (Eds.), Improved Oil Recovery by Surfactant and Polymer Flooding. Academic Press, pp. 253-274. [Pg.578]

Energy dispersive X-ray analysis (EDXA) is of assistance in identifying the principal chemical elements in particular crystals. This information, along with crystal shape, enables one to identify reasonably well the minerals likely to be contacted by a surfactant slug when injected into a core or a reservoir formation. Thus, the basic sand matrix of these materials is revealed while the presence of particular clay minerals, such as kaolinite, can be seen in Berea sandstone and Glenn Sand dolomite appears to be present in significant amounts in the core from the San Andres formation. [Pg.11]

Clays are considered detrimental to EOR processes that are based on the injection of chemicals, such as foam-forming surfactants, because clays provide a large amount of surface area for adsorption. Table VII shows a comparison of specific surface areas of some clays (97, 117, 118) and of the solids used in the adsorption experiments of Figure 15 (12, 119, 120). Figure 15 allows comparison of adsorption levels in Berea sandstone, which consists mainly of quartz and 6-8% clays, with adsorption on clean quartz sand. [Pg.293]

A new technique using C02-activated plugs of sodium orthosilicate is used to plug fractures in sandstone cores. This is followed by injection of chemical slugs, such as alkali/surfactant and polymer/alkali/surfactant. A series of experimental runs were conducted on artificially fractured Berea sandstone cores. It is shown that recovery as high as 75% of the oil In place is possible with the novel treatment as compared to less than 10% recovery with waterfloods. Results are presented for various slug sizes. [Pg.223]

There are two additional types of chemical flooding systems that involve surfactants which are briefly mentioned here. One of these systems utilizes surfactant-polymer mixtures. One such study was presented by Osterloh et al. [72] which examined anionic PO/EO surfactant microemulsions containing polyethylene glycol additives adsorbed onto clay. The second type of chemical flood involves the use of sodium bicarbonate. The aim of the research was to demonstrate that the effectiveness of sodium bicarbonate in oil recovery could be enhanced with the addition of surfactant. The surfactant adsorption was conducted in batch studies using kaolinite and Berea sandstone [73]. It was determined that the presence of a low concentration of surfactant was effective in maintaining the alkalinity even after long exposures to reservoir minerals. Also, the presence of the sodium bicarbonate is capable of reducing surfactant adsorption. [Pg.146]


See other pages where Sandstone/surfactant chemical is mentioned: [Pg.202]    [Pg.202]    [Pg.399]    [Pg.218]    [Pg.143]    [Pg.136]    [Pg.239]    [Pg.308]    [Pg.189]    [Pg.203]   


SEARCH



Sandstones

© 2024 chempedia.info