Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sample thermogravimetric analysis

Thermogravimetric methods such as pyrolysis gas chromatography-mass spectrometry have been used to characterize hydrocarbon sludges from polluted soils [10]. In combination with conventional extraction and supercritical fluid extraction followed by gas chromatography-mass spectrometry, over 100 constituents were identified in soil samples. Thermogravimetric analysis-mass spectrometric results distinguished between the release of a component by thermosorption and by pyrolysis. [Pg.119]

After evacuation at 373 K the thermogram of the rehydrated samples is similar to that of the calcined sample. Thermogravimetric analysis, however, shows that the surface is still highly hydroxylated, which leads to the conclusion that hydroxyl groups and oxygen have basicities of the same order of magnitude, at least relative to CO2. [Pg.329]

In a thermogravimetric analysis, the sample is placed in a small weighing boat attached to one arm of a specially designed electromagnetic balance and placed inside an electric furnace. The temperature of the electric furnace is slowly increased at a fixed rate of a few degrees per minute, and the sample s weight is monitored. [Pg.257]

Mixtures can be identified with the help of computer software that subtracts the spectra of pure compounds from that of the sample. For complex mixtures, fractionation may be needed as part of the analysis. Commercial instmments are available that combine ftir, as a detector, with a separation technique such as gas chromatography (gc), high performance Hquid chromatography (hplc), or supercritical fluid chromatography (96,97). Instmments such as gc/ftir are often termed hyphenated instmments (98). Pyrolyzer (99) and thermogravimetric analysis (tga) instmmentation can also be combined with ftir for monitoring pyrolysis and oxidation processes (100) (see Analytical methods, hyphenated instruments). [Pg.315]

This phenomenon can be demonstrated by both measuring the changes of the thermal properties of the ECA homopolymer and in adhesion tests. The addition of only 1 wt.% of 9 to a sample of the ECA homopolymer significantly increases the onset of decomposition in the thermogravimetric analysis (TGA) of the polymer, as seen in Fig. 9 [29]. [Pg.860]

The modified NBR samples were characterized by differential scanning calorimetry [11,78-80,98]. The glass-transition temperature (T ) decreased with the level of hydrogenation. In the case of HFNBR, Tg increased with an increase in the addition of aldehyde groups to the polymer chain. Thermogravimetric analysis of the modified polymers have also been carried out [15]. [Pg.570]

Thermogravimetric analysis (TGA) measures changes in weight of a sample being heated. A typical Thermogravimetric analysis (TGA) apparatus is shown in the following diagram ... [Pg.381]

Both thermogravimetric analysis and differential scanning calorimetric studies were carried out on modified and unmodified PPO samples. Table IV presents the weight losses and the glass transition temperatures of the most representative polymers. [Pg.51]

In a study on the thermal and UV ageing of two commercial polyfoxymethy-lene) (POM) samples, one of which was a copolymer (see related study discussed later under Section 4.3, thermogravimetric analysis (TGA)), used in car interior applications, involving both DSC and TGA, isothermal OIT measurements were made at several different temperatures [8]. One conclusion from this study was that "extrapolation of the OIT data from high temperatures (molten state) to ambient temperatures in the solid state does not reflect effective antioxidant performance at room temperature", and thus measurements close to the melting point are not appropriate for reliable lifetime estimations. [Pg.391]

Nitrogen adsorption was performed at -196 °C in a Micromeritics ASAP 2010 volumetric instrument. The samples were outgassed at 80 °C prior to the adsorption measurement until a 3.10 3 Torr static vacuum was reached. The surface area was calculated by the Brunauer-Emmett-Teller (BET) method. Micropore volume and external surface area were evaluated by the alpha-S method using a standard isotherm measured on Aerosil 200 fumed silica [8]. Powder X-ray diffraction (XRD) patterns of samples dried at 80 °C were collected at room temperature on a Broker AXS D-8 diffractometer with Cu Ka radiation. Thermogravimetric analysis was carried out in air flow with heating rate 10 °C min"1 up to 900 °C in a Netzsch TG 209 C thermal balance. SEM micrographs were recorded on a Hitachi S4500 microscope. [Pg.390]

When heated, many solids evolve a gas. For example, most carbonates lose carbon dioxide when heated. Because there is a mass loss, it is possible to determine the extent of the reaction by following the mass of the sample. The technique of thermogravimetric analysis involves heating the sample in a pan surrounded by a furnace. The sample pan is suspended from a microbalance so its mass can be monitored continuously as the temperature is raised (usually as a linear function of time). A recorder provides a graph showing the mass as a function of temperature. From the mass loss, it is often possible to establish the stoichiometry of the reaction. Because the extent of the reaction can be followed, kinetic analysis of the data can be performed. Because mass is the property measured, TGA is useful for... [Pg.266]

Fig. 14 Schematic diagram of apparatus suitable for thermogravimetric analysis. The experimental observable is the percent weight loss of the sample, which will be plotted as a function of the system temperature. Fig. 14 Schematic diagram of apparatus suitable for thermogravimetric analysis. The experimental observable is the percent weight loss of the sample, which will be plotted as a function of the system temperature.
Dynamic mechanical anlaysis (DMA) measurements were done on a Rheometrics RDS-7700 rheometer in torsional rectangular geometry mode using 60 x 12 x 3 mm samples at 0.05% strain and 1 Hz. Differential scanning calorimetry (DSC), thermomechanical analysis (TMA), and thermogravimetric analysis (TGA) were performed on a Perkin-Elmer 7000 thermal analysis system. [Pg.43]

Thermal stabilities were assessed by thermogravimetric analysis (TGA). Samples were held at constant temperature (290°C) for 1 h in air in a Perkin-Elmer TGA. Much of the weight loss, particularly for Kel-F 6060, is suspected to be emulsifier used during polymerization. [Pg.83]

Thermogravimetric analysis In thermogravimetric analysis (TGA) a sensitive balance is used to follow the weight change of the sample as a function of temperature. Its applications include the assessment of thermal stability and decomposition temperature, extent of cure in condensation polymers, composition and some information on sequence distribution in copolymers, and composition of filled polymers, among many others. [Pg.88]

Differential thermal analysis (DTA) is a technique in which the temperature difference between the sample tested and a reference material is measured while both are subjected to the controlled temperature program. Differential scanning calorimetry (DSC) is a technique in which the heat flow difference between the sample and reference material is monitored while both are subjected to the controlled temperature program. Thermogravimetric analysis (TGA) is a technique in which the weight of a sample is monitored during the controlled temperature program. [Pg.424]

In Thermogravimetric analysis a sample of material is heated at a fixed rate whilst the mass of the sample is continuously recorded. This technique identifies de-hydration, de-solvation and decomposition. [Pg.50]

The nature of the material to be studied, which means its degree of crystallinity and perfectness of crystal structure, may have a significant effect on the thermoanalytical behavior. In spite of identical chemical composition of a certain material the variations with respect to structure, imperfections, grain boundaries, etc. are almost infinite. Of course many of these will not show in normal thermogravimetric analysis, with very sensitive apparatus characteristically different TG curves18, 19 may be obtained however. As an example Fig. 26 shows the thermal decomposition of hydrozincite, Zn5(OH)6(003)2, whereby equal amounts of samples from natural origin and synthetic preparations are compared. [Pg.108]

A large number of chemical substances invariably decompose upon heating, and this idea of heating a sample to observe weight changes is the underlying principle of thermogravimetric analysis (TGA). However, TGA may be sub-divided into two heads, namely ... [Pg.194]

In dynamic thermogravimetric analysis a sample is subjected to conditions of predetermined, carefully controlled continuous increase in temperature that is invariably found to be linear with time. [Pg.194]

Thermogravimetric analysis (TGA) and differential thermal analysis (DTA) curves of the Ag/Si02 sample prepared by the two-step method are shown in Fig. 6.10. The TGA curve exhibits two evident weight loses, which are in the range of ca. 100 to 250°C and 250 to 550°C, corresponding to the loss of solvent, water, ethanol and THF, and the decomposition of organic silica, respectively. Four evident endothermic peaks can be observed from DTA curve, which centered at ca. 200°C, 350°C, 425°C and 480°C, respectively. [Pg.84]


See other pages where Sample thermogravimetric analysis is mentioned: [Pg.201]    [Pg.445]    [Pg.521]    [Pg.106]    [Pg.943]    [Pg.444]    [Pg.894]    [Pg.895]    [Pg.137]    [Pg.379]    [Pg.619]    [Pg.670]    [Pg.266]    [Pg.372]    [Pg.263]    [Pg.7]    [Pg.70]    [Pg.245]    [Pg.373]    [Pg.479]    [Pg.88]    [Pg.187]    [Pg.72]    [Pg.136]    [Pg.469]    [Pg.322]    [Pg.104]    [Pg.57]   
See also in sourсe #XX -- [ Pg.12 ]

See also in sourсe #XX -- [ Pg.149 , Pg.150 , Pg.151 , Pg.152 ]




SEARCH



Thermogravimetric analysis

© 2024 chempedia.info