Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Salicylates Lithium compounds

However, a careful study of the experimental data has led to some general trends. For instance, the nature of the final products depends heavily on the alkali cations used in the starting compounds sodium and lithium phenoxides reacting under similar experimental conditions yield the related salicylates as major products [18] (Scheme 5.1), whereas potassium, rubidium, and cesium phenoxides yield mixtures of 2-hydroxy-benzoic acid and 4-hydroxy-benzoic acid [1] (Scheme 5.2). As a rule of thumb, the yield of p-hydroxybenzoic acid generally increases with the increasing ionic radius of the alkali metal. Both, temperature and C02-pressure were also reported to be paramount in the selectivity of the carboxylation ... [Pg.92]

IODINE (7553-56-2) A powerful oxidizer. Material or vapors react violently with reducing agents, combustible materials, alkali metals, acetylene, acetaldehyde, antimony, boron, bromine pentafluoride, bromine trifluoride, calcium hydride, cesium, cesium oxide, chlorine trifluoride, copper hydride, dipropylmercury, fluoride, francium, lithium, metal acetylides, metal carbides, nickel monoxide, nitryl fluoride, perchloryl perchlorate, polyacetylene, powdered metals, rubidium, phosphorus, sodium, sodium phosphinate, sulfur, sulfur trioxide, tetraamine, trioxygen difluoride. Forms heat- or shock-sensitive compounds with ammonia, silver azide, potassium, sodium, oxygen difluoride. Incompatible with aluminum-titanium alloy, barium acetylide, ethanol, formamide, halogens, mercmic oxide, mercurous chloride, oxygen, pyridine, pyrogallic acid, salicylic acid sodium hydride, sodium salicylate, sulfides, and other materials. [Pg.658]

D. Enhancement of Elimination Enhancement of elimination is possible for a number of toxins, including manipulation of urine pH to accelerate renal excretion of weak acids and bases. For example, alkaline diuresis is effective in toxicity due to fluoride, isoniazid, fluoroquinolones, phenobarbital, and salicylates. Urinary acidiflcation may be useful in toxicity due to weak bases, including amphetamines, nicotine, and phencyclidine, but care must be taken to avoid acidosis and renal failure in rhabdomyolysis. Hemodialysis or hemoperfusion enhances the elimination of many toxic compounds, including acetaminophen, ethylene glycol, formaldehyde, lithium, methanol, procainamide, quinidine, salicylates, and theophylline. Cathartics such as sorbitol (70%) may decrease absorption and hasten removal of toxins from the gastrointestinal tract. [Pg.520]

There is a difference in the behavior of benzenediolatoborate and naphthalenedio-latoborate solutions on the one hand, and lithium bis[2,2 -biphenyldiolato(2-)-0,0 ] borate (point 5 in fig. 8) lithium bis[ salicylate (2-) ]borate (point 6) or benzene-diolatoborate/phenolate mixed solutions on the other (Fig.8). This can be tentatively explained by the assumption of different decomposition mechanisms due to different structures, which entail the formation of soluble colored quinones from benzenediolatoborate anions and lithium-ion conducting films from solutions of the latter compounds (points 5 and 6) [80], The assumption of a different mechanism and the formation of a lithium-ion conducting, electronically insulating film is supported by... [Pg.477]


See other pages where Salicylates Lithium compounds is mentioned: [Pg.90]    [Pg.73]    [Pg.256]    [Pg.670]    [Pg.337]    [Pg.350]    [Pg.587]    [Pg.657]    [Pg.658]    [Pg.682]    [Pg.72]    [Pg.28]    [Pg.29]   
See also in sourсe #XX -- [ Pg.1119 ]




SEARCH



Lithium compounds

Lithium salicylate

Salicylic compounds

Sodium salicylate Lithium compounds

© 2024 chempedia.info