Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Saddle bifurcates

The requirement for an occurrence of the saddle bifurcation (the sensitive state X2 = 0, X2 different from zero) is obtained, in view of equations (5.90a) and (5.91c), in the form of a condition for the control parameters clf c2 (for example, from (5.91c) follows 2x + c2 = 0, x different from zero) ... [Pg.188]

In the bifurcation diagram shown in Fig. 85, the plane of control parameters was divided into regions of a qualitatively different character of phase trajectories (the shapes of these trajectories are given in the respective regions) and the lines on which occur sensitive states of the Hopf bifurcation and the saddle bifurcation were marked. The diagram also depicts the line of sensitive states of the global bifurcation the appearance of a cycle from the branches of saddle separatrices. [Pg.188]

Another typical codimension-one bifurcation (left untouched in this book) within the class of Morse-Smale systems includes the so-called saddle-saddle bifurcations, where a non-rough saddle equilibrium state with one zero characteristic exponent (the others lie in both left and right half-planes) coalesces with another saddle having a different topological type. If, in addition, the stable and unstable manifolds of the saddle-saddle point intersect each other transversely along some homoclinic orbits, then as the bifurcating point disappears, saddle periodic orbits are born from the homoclinic loops. If there is only one homoclinic loop, then only one periodic orbit is born from it, and respectively, this bifurcation does not lead the system out of the Morse-Smale class. However, if there are more than one homoclinic loops, a hyperbolic limit set with infinitely many saddle periodic orbits will appear after the saddle-saddle vanishes [135]. [Pg.15]

The bifurcational diagram (fig. 44) shows how the (Qo,li) plane breaks up into domains of different behavior of the instanton. In the Arrhenius region at T> classical transitions take place throughout both saddle points. When T < 7 2 the extremal trajectory is a one-dimensional instanton, which crosses the maximum barrier point, Q = q = 0. Domains (i) and (iii) are separated by domain (ii), where quantum two-dimensional motion occurs. The crossover temperatures, Tci and J c2> depend on AV. When AV Vq domain (ii) is narrow (Tci — 7 2), so that in the classical regime the transfer is stepwise, while the quantum motion is a two-proton concerted transfer. This is the case when the tunneling path differs from the classical one. The concerted transfer changes into the two-dimensional motion at the critical value of parameter That is, when... [Pg.108]

It can be seen from Fig. 15(a) that the atom moves in a stick-slip way. In forward motion, for example, it is a stick phase from A to B during which the atom stays in a metastable state with little change in position as the support travels forward. Meanwhile, the lateral force gradually climbs up in the same period, leading to an accumulation of elastic energy, as illustrated in Fig. 15(fo). When reaching the point B where a saddle-node bifurcation appears, the metastable... [Pg.173]

The changes of lateral force F in forward and backward motions follow the curve 1 and 2, respectively. It can be observed that there is one saddle-node bifurcation for the repulsive pinning center, but two bifurcations for the attractive piiming center. This suggests that the interfacial instability results from different mechanisms. On one hand, the asperity suddenly looses contact as it slides over a repulsive pinning center, but in the attractive case, on the other hand, the... [Pg.173]

What cannot be obtained through local bifurcation analysis however, is that both sides of the one-dimensional unstable manifold of a saddle-type unstable bimodal standing wave connect with the 7C-shift of the standing wave vice versa. This explains the pulsating wave it winds around a homoclinic loop consisting of the bimodal unstable standing waves and their one-dimensional unstable manifolds that connect them with each other. It is remarkable that this connection is a persistent homoclinic loop i.e. it exists for an entire interval in parameter space (131. It is possible to show that such a loop exists, based on the... [Pg.287]

The lower a graph is more interesting. While initially the Poincar6 phase portrait looks the same as before (point E, inset 2c) an interval of hysteresis is observed. The saddle-node bifurcation of the pericxiic solutions occurs off the invariant circle, and a region of two distinct attractors ensues a stable, quasiperiodic one and a stable periodic one (Point F, inset 2d). The boundary of the basins of attraction of these two attractors is the one-dimensional (for the map) stable manifold of the saddle-type periodic solutions, SA and SB. One side of the unstable manifold will get attract to one attractor (SC to the invariant circle) while the other side will approach die other attractor (SD to die periodic solution). [Pg.289]

The mechanism of these transitions is nontrivial and has been discussed in detail elsewhere Q, 12) it involves the development of a homoclinic tangencv and subsequently of a homoclinic tangle between the stable and unstable manifolds of the saddle-type periodic solution S. This tangle is accompanied by nontrivial dynamics (chaotic transients, large multiplicity of solutions etc.). It is impossible to locate and analyze these phenomena without computing the unstable, saddle-tvpe periodic frequency locked solution as well as its stable and unstable manifolds. It is precisely the interactions of such manifolds that are termed global bifurcations and cause in this case the loss of the quasiperiodic solution. [Pg.291]

The dominant practice in Quantum chemistry is optimization. If the geometry optimization, for instance through analytic gradients, leads to symmetry-broken conformations, we publish and do not examine the departure from symmetry, the way it goes. This is a pity since symmetry breaking is a catastrophe (in the sense of Thom s theory) and the critical region deserves attention. There are trivial problems (the planar three-fold symmetry conformation of NH3 is a saddle point between the two pyramidal equilibrium conformations). Other processes appear as bifurcations for instance in the electron transfer... [Pg.114]

Figure 39, Chapter 3. Bifurcation diagrams for the model of the Calvin cycle for selected parameters. All saturation parameters are fixed to specific values, and two parameters are varied. Shown is the number of real parts of eigenvalues larger than zero (color coded), with blank corresponding to the stable region. The stability of the steady state is either lost via a Hopf (HO), or via saddle node (SN) bifurcations, with either two or one eigenvalue crossing the imaginary axis, respectively. Intersections point to complex (quasiperiodic or chaotic) dynamics. See text for details. Figure 39, Chapter 3. Bifurcation diagrams for the model of the Calvin cycle for selected parameters. All saturation parameters are fixed to specific values, and two parameters are varied. Shown is the number of real parts of eigenvalues larger than zero (color coded), with blank corresponding to the stable region. The stability of the steady state is either lost via a Hopf (HO), or via saddle node (SN) bifurcations, with either two or one eigenvalue crossing the imaginary axis, respectively. Intersections point to complex (quasiperiodic or chaotic) dynamics. See text for details.
Figure 19. The steady state solutions A0 of the pathway shown in Fig. 18 as a function of the influx vi. For an intermediate influx, two pathways exist in two possible stable steady states (black lines), separated by an unstable state (gray line). The stable and the unstable state annihilate in a saddle node bifurcation. The parameters are k.2 0.2, 3 2.0, K] 1.0, and n 4 (in arbitrary units). Figure 19. The steady state solutions A0 of the pathway shown in Fig. 18 as a function of the influx vi. For an intermediate influx, two pathways exist in two possible stable steady states (black lines), separated by an unstable state (gray line). The stable and the unstable state annihilate in a saddle node bifurcation. The parameters are k.2 0.2, 3 2.0, K] 1.0, and n 4 (in arbitrary units).
Besides the two most well-known cases, the local bifurcations of the saddle-node and Hopf type, biochemical systems may show a variety of transitions between qualitatively different dynamic behavior [13, 17, 293, 294, 297 301]. Transitions between different regimes, induced by variation of kinetic parameters, are usually depicted in a bifurcation diagram. Within the chemical literature, a substantial number of articles seek to identify the possible bifurcation of a chemical system. Two prominent frameworks are Chemical Reaction Network Theory (CRNT), developed mainly by M. Feinberg [79, 80], and Stoichiometric Network Analysis (SNA), developed by B. L. Clarke [81 83]. An analysis of the (local) bifurcations of metabolic networks, as determinants of the dynamic behavior of metabolic states, constitutes the main topic of Section VIII. In addition to the scenarios discussed above, more complicated quasiperiodic or chaotic dynamics is sometimes reported for models of metabolic pathways [302 304]. However, apart from few special cases, the possible relevance of such complicated dynamics is, at best, unclear. Quite on the contrary, at least for central metabolism, we observe a striking absence of complicated dynamic phenomena. To what extent this might be an inherent feature of (bio)chemical systems, or brought about by evolutionary adaption, will be briefly discussed in Section IX. [Pg.171]

Figure 28. The eigenvalues of the Jacobian of minimal glycolysis as a function of the influence of ATP on the first reaction V (ATP) (feedback strength). Shown is the largest real part of the eigenvalues (solid line), along with the corresponding imaginary part (dashed line). Different dynamic regimes are separated by vertical dashed lines, for > 0 the state is unstable. Transitions occur via a saddle node (SN) and a Hopf (HO) bifurcation. Parameters are v° 1, TP° 1, ATP0 0.5, At 1, and 6 0.8. See color insert. Figure 28. The eigenvalues of the Jacobian of minimal glycolysis as a function of the influence of ATP on the first reaction V (ATP) (feedback strength). Shown is the largest real part of the eigenvalues (solid line), along with the corresponding imaginary part (dashed line). Different dynamic regimes are separated by vertical dashed lines, for > 0 the state is unstable. Transitions occur via a saddle node (SN) and a Hopf (HO) bifurcation. Parameters are v° 1, TP° 1, ATP0 0.5, At 1, and 6 0.8. See color insert.
Figure 29 Bifurcation diagram of the minimal model of glycolysis as a function of feedback strength and saturation 6 of the ATPase reaction. Shown are the transitions to instability via a saddle node (SN) and a Hopf (HO) bifurcation (solid lines). In the regions (i) and (iv), the largest real part with in the spectrum of eigenvalues is positive > 0. Within region (ii), the metabolic state is a stable node, within region (iii) a stable focus, corresponding to damped transient oscillations. Figure 29 Bifurcation diagram of the minimal model of glycolysis as a function of feedback strength and saturation 6 of the ATPase reaction. Shown are the transitions to instability via a saddle node (SN) and a Hopf (HO) bifurcation (solid lines). In the regions (i) and (iv), the largest real part with in the spectrum of eigenvalues is positive > 0. Within region (ii), the metabolic state is a stable node, within region (iii) a stable focus, corresponding to damped transient oscillations.
Figure 33. The stability of yeast glycolysis A Monte Carlo approach. A Shown in the distribution of the largest positive real part within the spectrum of eigenvalues, depicted from above (contour plot). Darker colors correspond to an increased density of eigenvalues. Instances with > 0 are unstable. B The probability that a random instance of the Jacobian corresponds to an unstable metabolic state as a function of the feedback strength 0, . The loss of stability occurs either via in a saddle node (SN) or via a Hopf (HO) bifurcation. Figure 33. The stability of yeast glycolysis A Monte Carlo approach. A Shown in the distribution of the largest positive real part within the spectrum of eigenvalues, depicted from above (contour plot). Darker colors correspond to an increased density of eigenvalues. Instances with > 0 are unstable. B The probability that a random instance of the Jacobian corresponds to an unstable metabolic state as a function of the feedback strength 0, . The loss of stability occurs either via in a saddle node (SN) or via a Hopf (HO) bifurcation.
While the conditions 1,2 can be verified approximately by simulation, proving the condition 3 is very difficult. Note that in many studies of chaotic behavior of a CSTR, only the conditions 1,2 are verified, which does not imply chaotic d3mamics, from a rigorous point of view. Nevertheless, the fulfillment of conditions 1,2, can be enough to assure the long time chaotic behavior i.e. that the chaotic motion is not transitory. From the global bifurcations and catastrophe theory other chaotic behavior can be considered throughout the disappearance of a saddle-node fixed point [10], [19], [26]. [Pg.249]

Fig. 26.1a). At first, multistage ignitions and extinctions occur followed by a relaxation (long period) mode [7]. Oscillations die a few degrees below the ignition temperature at a saddle-loop infinite-period homoclinic orbit bifurcation point. This is an example where both ignition and extinction are oscillatory. [Pg.429]

Fig. 9. Linear stability diagram illustrating (21). The bifurcation parameter B is plotted against the wave number n. (a) and (b) are regions of complex eigenvalues < > (b) shows region corresponding to an unstable focus (c) region corresponding to a saddle point. The vertical lines indicate the allowed discrete values of n. A = 2, D, = 8 103 D2 = 1.6 10-3. Fig. 9. Linear stability diagram illustrating (21). The bifurcation parameter B is plotted against the wave number n. (a) and (b) are regions of complex eigenvalues < > (b) shows region corresponding to an unstable focus (c) region corresponding to a saddle point. The vertical lines indicate the allowed discrete values of n. A = 2, D, = 8 103 D2 = 1.6 10-3.
When the determinant of the Jacobian matrix becomes zero, one of the roots of (3.43) also becomes zero. This represents the point at which a node (stable or unstable depending on the sign of tr(J)) is just changing to a saddle point or vice versa. Such saddle-node bifurcations, characterized by... [Pg.68]

For all physically acceptable conditions, the determinant of J is positive, so we will not find saddle points or saddle-node bifurcations. We can, however, expect to find conditions under which nodal states become focal (damped oscillatory responses), i.e. where A = 0, and where focal states lose stability at Hopf bifurcations, i.e. where tr(J) = 0 and where we shall look for the onset of sustained oscillations. [Pg.95]

In fact only the upper root corresponds to a Hopf bifurcation point (the lower solution to the condition tr(J) = 0 being satisfied along the saddle point branch of the isola where the system does not have complex eigenvalues). [Pg.224]

Fig. 8.8. Phase plane representations of the birth (or death) of limit cycles through homoclinic orbit formation. In the sequence (a)-fb)-(c) the system has two stable stationary states (solid circles) and a saddle point. As some parameter is varied, the separatrices of the saddle join together to form a closed loop or homoclinic orbit (b) this loop develops as the parameter is varied further to shed an unstable limit cycle surrounding one of the stationary states. The sequence (d)-(e)-(f) shows the corresponding formation of a stable limit cycle which surrounds an unstable stationary state. (In each sequence, the limit cycle may ultimately shrink on to the stationary state it surrounds—at a Hopf bifurcation point.)... Fig. 8.8. Phase plane representations of the birth (or death) of limit cycles through homoclinic orbit formation. In the sequence (a)-fb)-(c) the system has two stable stationary states (solid circles) and a saddle point. As some parameter is varied, the separatrices of the saddle join together to form a closed loop or homoclinic orbit (b) this loop develops as the parameter is varied further to shed an unstable limit cycle surrounding one of the stationary states. The sequence (d)-(e)-(f) shows the corresponding formation of a stable limit cycle which surrounds an unstable stationary state. (In each sequence, the limit cycle may ultimately shrink on to the stationary state it surrounds—at a Hopf bifurcation point.)...

See other pages where Saddle bifurcates is mentioned: [Pg.326]    [Pg.234]    [Pg.421]    [Pg.326]    [Pg.234]    [Pg.421]    [Pg.1115]    [Pg.338]    [Pg.284]    [Pg.287]    [Pg.287]    [Pg.289]    [Pg.291]    [Pg.82]    [Pg.85]    [Pg.88]    [Pg.90]    [Pg.131]    [Pg.171]    [Pg.200]    [Pg.206]    [Pg.219]    [Pg.507]    [Pg.66]    [Pg.70]    [Pg.211]    [Pg.226]   
See also in sourсe #XX -- [ Pg.214 ]




SEARCH



Bifurcate

Bifurcated

Bifurcation mechanisms saddle-node bifurcations

Bifurcation saddle loop

Bifurcation saddle-node

Bifurcations of a separatrix loop with zero saddle value

Catastrophe saddle node bifurcation

Global saddle-node bifurcation

Saddle bifurcated

Saddle bifurcated

Saddle connection bifurcation

Saddle-node bifurcation on a limit

Saddle-node bifurcation on a limit cycle

Saddle-node bifurcations systems

Saddles

© 2024 chempedia.info