Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Global saddle-node bifurcation

To conclude, noise-induced front motion and oscillations have been observed in a spatially extended system. The former are induced in the vicinity of a global saddle-node bifurcation on a limit cycle where noise uncovers a mechanism of excitability responsible also for coherence resonance. In another dynamical regime, namely below a Hopf bifurcation, noise induces oscillations of decreasing regularity but with almost constant basic time scales. Applying time-delayed feedback enhances the regularity of those oscillations and allows to manipulate the time scales of the system by varying the time delay t. [Pg.158]

The essential map carries most of the information on the global saddle-node bifurcations. As already mentioned, its degree m defines the topological type of W. If m = 1, then is smooth if, and only if, /(< ) does not have critical points (see (12.2.10) and (12.2.13)). Below (Theorem 12.4), we give a precise formulation to the following reduction principle ... [Pg.290]

Fig. 2.7 (a) Temporal variation of the membrane potential V and the intracellular calcium concentration S in the considered simple model of a bursting pancreatic cell, (b) Bifurcation diagram forthe fast subsystem the black square denotes a Hopf bifurcation, the open circles are saddle-node bifurcations, and the filled circle represents a global bifurcation, (c) Trajectory plotted on top of the bifurcation diagram. The null-cline forthe slow subsystem is shown dashed. [Pg.51]

It has been shown recently that the vibrational spectra of HCP [33-36], HOCl [36-39], and HOBr [40,41] obtained from quantum mechanical calculations on global ab initio surfaces can be reproduced accurately in the low to intermediate energy regime (75% of the isomerization threshold for HCP, 95% of the dissociation threshold for HOCl and HOBr) with an integrable Fermi resonance Hamiltonian. Based on the analysis of this Hamiltonian, this section proposes an interpretation of the most salient feature of the dynamics of these molecules, namely the first saddle-node bifurcation, which takes place in the intermediate energy regime. [Pg.287]

While the conditions 1,2 can be verified approximately by simulation, proving the condition 3 is very difficult. Note that in many studies of chaotic behavior of a CSTR, only the conditions 1,2 are verified, which does not imply chaotic d3mamics, from a rigorous point of view. Nevertheless, the fulfillment of conditions 1,2, can be enough to assure the long time chaotic behavior i.e. that the chaotic motion is not transitory. From the global bifurcations and catastrophe theory other chaotic behavior can be considered throughout the disappearance of a saddle-node fixed point [10], [19], [26]. [Pg.249]

The bursting dynamics ends in a different type of process, referred to as a global (or homoclinic) bifurcation. In the interval of coexisting stable solutions, the stable manifold of (or the inset to) the saddle point defines the boundary of the basins of attraction for the stable node and limit cycle solutions. (The basin of attraction for a stable solution represents the set of initial conditions from which trajectories asymptotically approach the solution. The stable manifold to the saddle point is the set of points from which the trajectories go to the saddle point). When the limit cycle for increasing values of S hits its basin of attraction, it ceases to exist, and... [Pg.53]

In Chap. 12 we will study the global bifurcations of the disappearance of saddle-node equilibrium states and periodic orbits. First, we present a multidimensional analogue of a theorem by Andronov and Leontovich on the birth of a stable limit cycle from the separatrix loop of a saddle-node on the plane. Compared with the original proof in [130], our proof is drastically simplified due to the use of the invariant foliation technique. We also consider the case when a homoclinic loop to the saddle-node equilibrium enters the edge of the node region (non-transverse case). [Pg.12]

The general setting of the problem of global bifurcations on the disappearance of a saddle-node periodic orbit is as follows. Assume that there exists a saddle-node periodic orbit and that all trajectories which tend to this periodic orbit as i — 00 also tend to it as -f-oo along some center manifold. In other words, assume that the unstable manifold of the saddle-node returns to the saddle-node orbit from the side of the node region. In this case, either ... [Pg.13]

A totally diflFerent situation becomes possible in the case where the system does not have a global cross-section, and when is not a manifold. In this case (Sec. 12.4), the disappearance of the saddle-node periodic orbit may, under some additional conditions, give birth to another (unique and stable) periodic orbit. When this periodic orbit approaches the stability boundary, both its length and period increases to infinity. This phenomenon is called a hlue-sky catastrophe. Since no physical model is presently known for which this bifurcation occurs, we illustrate it by a number of natural examples. [Pg.15]

GLOBAL BIFURCATIONS AT THE DISAPPEARANCE OF SADDLE-NODE EQUILIBRIUM STATES AND PERIODIC ORBITS... [Pg.269]

As already mentioned, problems of this nature had appeared as early as in the twenties in connection with the phenomenon of transition from synchronization to an amplitude modulation regime. A rigorous study of this bifurcation was initiated in [3], under the assumption that the dynamical system with the saddle-node is either non-autonomous and periodically depending on time, or autonomous but possessing a global cross-section (at least in that part of the phase space which is under consideration). Thus, the problem was reduced to the study of a one-parameter family of C -diffeomorphisms (r > 2) on the cross-section, which has a saddle-node fixed point O at = 0 such that all orbits of the unstable set of the saddle-node come back to it as the number of iterations tends to -hoo (see Fig. 12.2.1(a) and (b)). [Pg.282]

Afraimovich, V, S. and Shilnikov, L. P. [1974] On some global bifurcations connected with the disappearance of fixed point of a saddle-node type, Soviet Math. Dokl. 15, 1761-1765. [Pg.559]


See other pages where Global saddle-node bifurcation is mentioned: [Pg.152]    [Pg.176]    [Pg.152]    [Pg.176]    [Pg.301]    [Pg.322]    [Pg.54]    [Pg.19]    [Pg.219]    [Pg.18]    [Pg.303]   


SEARCH



Bifurcate

Bifurcated

Bifurcation saddle-node

Global bifurcations

Nodes

Saddle bifurcated

Saddle bifurcates

Saddle-node

Saddles

© 2024 chempedia.info