Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

SA node

The Cardiac Cycle. The heart (Eig. lb) performs its function as a pump as a result of a rhythmical spread of a wave of excitation (depolarization) that excites the atrial and ventricular muscle masses to contract sequentially. Maximum pump efficiency occurs when the atrial or ventricular muscle masses contract synchronously (see Eig. 1). The wave of excitation begins with the generation of electrical impulses within the SA node and spreads through the atria. The SA node is referred to as the pacemaker of the heart and exhibits automaticity, ie, it depolarizes and repolarizes spontaneously. The wave then excites sequentially the AV node the bundle of His, ie, the penetrating portion of the AV node the bundle branches, ie, the branching portions of the AV node the terminal Purkinje fibers and finally the ventricular myocardium. After the wave of excitation depolarizes these various stmetures of the heart, repolarization occurs so that each of the stmetures is ready for the next wave of excitation. Until repolarization occurs the stmetures are said to be refractory to excitation. During repolarization of the atria and ventricles, the muscles relax, allowing the chambers of the heart to fill with blood that is to be expelled with the next wave of excitation and resultant contraction. This process repeats itself 60—100 times or beats per minute... [Pg.111]

Decreases the conduction velocity through the atrioventricular (AV) and sinoatrial (SA) nodes in the heart... [Pg.358]

The cardiotonics affect the transmission of electrical impulses along the pathway of the conduction system of tiie heart. The conduction system of die heart is a group of specialized nerve fibers consisting of die SA node, die AV node, the bundle of His, and die branches of Purkinje (Fig. 39-2). Each heartbeat (or contraction of tiie ventricles) is tiie result of an electrical impulse tiiat normally starts in tiie SA node, is tiien received by die AV node, and travels down die bundle of His and through tiie Purkinje fibers (see Fig. 39-2). The heartbeat can be felt as a pulse at the wrist and otiier areas of die body where an artery is close to the surface or lies near a bone When the electrical impulse reaches the... [Pg.359]

Following initiation of the electrical impulse from the SA node, the impulse travels through the internodal pathways of the specialized atrial conduction system and Bachmann s bundle (Fig. 6-1 j.1 The atrial conducting fibers do not traverse the entire breadth of the left and right atria, as impulse conduction occurs across the internodal pathways, and when the impulse reaches the end of Bachmann s bundle, atrial depolarization spreads as a wave similar to that which occurs upon throwing a... [Pg.108]

Abnormal initiation of electrical impulses occurs as a result of abnormal automaticity. If the automaticity of the SA node increases, this results in an increased rate of generation of impulses and a rapid heart rate (sinus tachycardia). If other cardiac fibers become abnormally automatic, such that the rate of initiation of spontaneous impulses exceeds that of the SA node, other types of tachyarrhythmias may occur. Many cardiac fibers possess the capability for automaticity, including the atrial tissue, the AV node, the Purkinje fibers, and the ventricular tissue. In addition, fibers with the capability of initiating and conducting electrical impulses are present in the pulmonary veins. Abnormal atrial automaticity may result in premature atrial contractions or may precipitate atrial tachycardia or atrial fibrillation (AF) abnormal AV nodal automaticity may result in junctional tachycardia (the AV node is also sometimes referred to as the AV junction). Abnormal automaticity in the ventricles may result in ventricular premature depolarizations (VPDs) or may precipitate ventricular tachycardia (VT) or ventricular fibrillation (VF). In addition, abnormal automaticity originating from the pulmonary veins is a precipitant of AF. [Pg.110]

Automaticity of cardiac fibers is controlled in part by activity of the sympathetic and parasympathetic nervous systems. Enhanced activity of the sympathetic nervous system may result in increased automaticity of the SA node or other automatic cardiac fibers. Enhanced activity of the parasympathetic nervous system tends to suppress automaticity conversely, inhibition of activity of the parasympathetic nervous system increases automaticity. Other factors may lead to abnormal increases in automaticity of extra-SA nodal tissues, including hypoxia, atrial or ventricular stretch [as might occur following long-standing hypertension or after the development of heart failure (HF)], and electrolyte abnormalities such as hypokalemia or hypomagnesemia. [Pg.110]

Adenosine and digoxin are agents used for the management of arrhythmias that do not fit into the Vaughan Williams classification. aSlows conduction, prolongs refractory period, and reduces automaticity in SA node and AV node tissue, but not in the ventricles. [Pg.112]

Sinus bradycardia is an arrhythmia that originates in the SA node, defined by a sinus rate less than 60 beats per minute (bpm).12... [Pg.112]

Sick sinus syndrome leading to sinus bradycardia occurs as a result of fibrotic tissue in the SA node, which replaces normal SA node tissue.12... [Pg.113]

Second-degree AV nodal blockade may cause bradycardia, as not all impulses generated by the SA node are conducted through the AV node to the ventricles. [Pg.114]

Compare and contrast the action potentials generated by the SA node and ventricular muscle cells... [Pg.163]

The sinoatrial (SA) node is located in the wall of the right atrium near the entrance of the superior vena cava. The specialized cells of the SA node spontaneously depolarize to threshold and generate 70 to 75 heart beats/ min. The "resting" membrane potential, or pacemaker potential, is different from that of neurons, which were discussed in Chapter 3 (Membrane Potential). First of all, this potential is approximately -55 mV, which is less negative than that found in neurons (-70 mV see Figure 13.2, panel A). Second, pacemaker potential is unstable and slowly depolarizes toward threshold (phase 4). Two important ion currents contribute to this slow depolarization. These cells are inherently leaky to sodium. The resulting influx of Na+ ions occurs through channels that differ from the fast Na+ channels that cause rapid depolarization in other types of excitable cells. Toward the end of phase... [Pg.169]

However, in the SAnode, the action potential develops more slowly because the fast Na+ channels do not play a role. Whenever the membrane potential is less negative than -60 mV for more than a few milliseconds, these channels become inactivated. With a resting membrane potential of -55 mV, this is clearly the case in the SA node. Instead, when the membrane potential reaches threshold in this tissue, many slow Ca++ channels open, resulting in the depolarization phase of the action potential. The slope of this depolarization is less steep than that of neurons. [Pg.171]

Because cardiac muscle is myogenic, nervous stimulation is not necessary to elicit the heart beat. However, the heart rate is modulated by input from the autonomic nervous system. The sympathetic and parasympathetic systems innervate the SA node. Sympathetic stimulation causes an increase in heart rate or an increased number of beats/min. Norepinephrine, which stimulates ( -adrenergic receptors, increases the rate of pacemaker depolarization by increasing the permeability to Na+ and Ca++ ions. If the heart beat is generated more rapidly, then the result is more beats per minute. [Pg.171]

Parasympathetic stimulation causes a decrease in heart rate. Acetylcholine, which stimulates muscarinic receptors, increases the permeability to potassium. Enhanced K+ ion efflux has a twofold effect. First, the cells become hyperpolarized and therefore the membrane potential is farther away from threshold. Second, the rate of pacemaker depolarization is decreased because the outward movement of K+ ions opposes the effect of the inward movement of Na+ and Ca++ ions. The result of these two effects of potassium efflux is that it takes longer for the SA node to reach threshold and generate an action potential. If the heart beat is generated more slowly, then fewer beats per minute are elicited. [Pg.171]

From the SA node, the heart beat spreads rapidly throughout both atria by way of the gap junctions. As mentioned previously, the atria are stimulated to contract simultaneously. An interatrial conduction pathway extends from the SA node to the left atrium. Its function is to facilitate conduction of the impulse through the left atrium, creating the atrial syncytium (see Figure 13.3). [Pg.171]

An internodal conduction pathway also extends from the SA node and transmits the impulse directly to the atrioventricular (AV) node. This node is located at the base of the right atrium near the interventricular septum, which is the wall of myocardium separating the two ventricles. Because the atria and ventricles are separated from each other by fibrous connective tissue, the electrical impulse cannot spread directly to the ventricles. Instead, the AV node serves as the only pathway through which the impulse can be transmitted to the ventricles. The speed of conduction through the AV node is slowed, resulting in a slight delay (0.1 sec). The cause of this AV nodal delay is partly due to the smaller fibers of the AV node. More importantly, however, fewer gap junctions exist between the cells of the node, which... [Pg.171]

Figure 13.3 Route of excitation and conduction in the heart. The heart beat is initiated in the sinoatrial (SA) node, or the pacemaker, in the right atrium of the heart. The electrical impulse is transmitted to the left atrium through the interatrial conduction pathway and to the atrioventricular (AV) node through the intemodal pathway. From the AV node, the electrical impulse enters the ventricles and is conducted through the AV bundle, the left and right bundle branches, and, finally, the Purkinje fibers, which terminate on the true cardiac muscle cells of the ventricles. Figure 13.3 Route of excitation and conduction in the heart. The heart beat is initiated in the sinoatrial (SA) node, or the pacemaker, in the right atrium of the heart. The electrical impulse is transmitted to the left atrium through the interatrial conduction pathway and to the atrioventricular (AV) node through the intemodal pathway. From the AV node, the electrical impulse enters the ventricles and is conducted through the AV bundle, the left and right bundle branches, and, finally, the Purkinje fibers, which terminate on the true cardiac muscle cells of the ventricles.
The action potential generated in the ventricular muscle is very different from that originating in the SA node. The resting membrane potential is not only stable it is much more negative than that of the SA node. Second, the slope of the depolarization phase of the action potential is much steeper. Finally, there is a lengthy plateau phase of the action potential in which the muscle cells remain depolarized for approximately 300 msec. The physiological significance of this sustained depolarization is that it leads to sustained contraction (also about 300 msec), which facilitates ejection of blood. These disparities in the action potentials are explained by differences in ion channel activity in ventricular muscle compared to the SA node. [Pg.173]

The ECG has several noteworthy characteristics. First, the firing of the SA node, which initiates the heart beat, precedes atrial depolarization and therefore should be apparent immediately prior to the P wave. However, due to its small size, it does not generate enough electrical activity to spread to the surface of the body and be detected by the electrodes. Therefore, there is no recording of the depolarization of the SA node. [Pg.175]

Verapamil (Class IV antiarrhythmic drug) is an effective agent for atrial or supraventricular tachycardia. A Ca++ channel blocker, it is most potent in tissues where the action potentials depend on calcium currents, including slow-response tissues such as the SA node and the AV node. The effects of verapamil include a decrease in heart rate and in conduction velocity of the electrical impulse through the AV node. The resulting increase in duration of the AV nodal delay, which is illustrated by a lengthening of the PR segment in the ECG, reduces the number of impulses permitted to penetrate to the ventricles to cause contraction. [Pg.176]

The autonomic nervous system exerts the primary control on heart rate. Because the sympathetic and parasympathetic systems have antagonistic effects on the heart, heart rate at any given moment results from the balance or sum of their inputs. The SA node, which is the pacemaker of the heart that determines the rate of spontaneous depolarization, and the AV node are innervated by the sympathetic and parasympathetic systems. The specialized ventricular conduction pathway and ventricular muscle are innervated by the sympathetic system only. [Pg.183]

At rest, the parasympathetic system exerts the predominant effect on the SA node and therefore on heart rate. In a denervated heart, such as a trans-... [Pg.184]

Figure 14.1 Effect of autonomic nervous system stimulation on action potentials of the sinoatrial (SA) node. A normal action potential generated by the SA node under resting conditions is represented by the solid line the positive chronotropic effect (increased heart rate) of norepinephrine released from sympathetic nerve fibers is illustrated by the short dashed line and the negative chronotropic effect (decreased heart rate) of acetylcholine released from parasympathetic nerve fibers is illustrated by the long dashed line. Figure 14.1 Effect of autonomic nervous system stimulation on action potentials of the sinoatrial (SA) node. A normal action potential generated by the SA node under resting conditions is represented by the solid line the positive chronotropic effect (increased heart rate) of norepinephrine released from sympathetic nerve fibers is illustrated by the short dashed line and the negative chronotropic effect (decreased heart rate) of acetylcholine released from parasympathetic nerve fibers is illustrated by the long dashed line.
Body temperature also affects heart rate by altering the rate of discharge of the SA node. An increase of 1°F in body temperature results in an increase in heart rate of about 10 beats per minute. Therefore, the increase in body temperature during a fever or that which accompanies exercise serves to increase heart rate and, as a result, cardiac output. This enhanced pumping action of the heart delivers more blood to the tissues and supports the increased metabolic activity associated with these conditions. [Pg.185]

Two important concepts to keep in mind throughout this discussion are that (1) the heart can only pump what it gets and (2) a healthy heart pumps all of the blood returned to it. The SA node may generate a heartbeat and cause the ventricles to contract however, these chambers must be properly filled with blood in order for this activity to be effective. On the other hand, the volume of blood that returns to the heart per minute may vary considerably. The heart has an intrinsic ability to alter its strength of contraction in order to accommodate these changes in volume. [Pg.185]

The effects of the autonomic nervous system on MAP are summarized in Figure 15.4. The parasympathetic system innervates the SA node and the AV node of the heart. The major cardiovascular effect of parasympathetic stimulation, by way of the vagus nerves, is to decrease HR, which decreases CO and MAP. [Pg.202]

The sympathetic system innervates most tissues in the heart including the SA node, AV node, and ventricular muscle. Sympathetic stimulation causes an increase in HR as well as an increase in ventricular contractility, which... [Pg.202]

It is customary today to classify anti arrhythmic drugs according to their mechanism of action. This is best defined by intracellular recordings that yield monophasic action potentials. In the accompanying figure, the monophasic action potentials of (A) slow response fiber (SA node) and (B) fast Purkinje fiber are shown. For each description that follows, choose the appropriate drug with which the change in character of the monophasic action potential is likely to be associated... [Pg.116]


See other pages where SA node is mentioned: [Pg.179]    [Pg.181]    [Pg.110]    [Pg.112]    [Pg.120]    [Pg.120]    [Pg.49]    [Pg.401]    [Pg.402]    [Pg.360]    [Pg.108]    [Pg.111]    [Pg.113]    [Pg.114]    [Pg.170]    [Pg.175]    [Pg.183]    [Pg.184]    [Pg.184]    [Pg.185]    [Pg.176]    [Pg.184]   
See also in sourсe #XX -- [ Pg.356 ]

See also in sourсe #XX -- [ Pg.67 ]




SEARCH



Nodes

SAED

SASS

© 2024 chempedia.info