Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ruthenium lead acetate

Ruthenium red (ammoniated ruthenium oxychloride) is a strong indicator of the polycarboxylic acid groups in pectin. This reagent is made by adding enough ruthenium red powder to 10% lead acetate to produce a wine-red color. [Pg.139]

Citronellal, an aldehyde with a trisubstituted double bond, was hydrogenated to citronellol over a ruthenium catalyst poisoned with lead acetate in 90-100% yields (eq. 5.22)46 or over chromium-promoted Raney Ni in 94% yield in methanol at 75°C and about 0.31 MPa H2.47 Court et al. studied the selective hydrogenation of citral (1, eq. 5.24) to citronellol over unsupported Nij. o catalysts, prepared by reduction of mixtures of metal iodides with naphthalene-sodium as reducing agent, in cyclohexane and in 2-propanol at 80°C and 1.0 MPa H2.48 Higher yields of citronellol were obtained in 2-propanol than in cyclohexane, primarily via citronellal as the predominant intermediate. The yields of citronellol for the overall hydrogenation in 2-propanol over Mo-promoted catalysts were Mo0 03 96%, Mo0 06 98%, and Mo012 96%. [Pg.178]

For PEMs, transmission electron microscopy (TEM) was usually used to study the microstructure of PEMs according to the contrast between domains. For most PEMs, there are at least two different domains hydrophilic and hydrophobic domains. To improve the contrast between the two domains, heavy metal salt like ruthenium tetroxide and lead acetate was often used to stain the membrane [43,46]. In TEM images, the bright portions are attributed to the hydrophobic domain, while the darker portions represent the hydrophilic domain. Choi and Jo have conducted TEM tests for sulfonated PS-b-PMMA membranes with different degrees of sulfonation and blend ratios [46]. They have found that the hydrophilic domains become larger as the degree of sulfonation is increased and the morphology of the membranes... [Pg.461]

Phosphorus pentafluoride Phosphorus pentasulfide Phosphorus pentoxide Phosphorus, red Phosphorus tribromide Phosphorus bichloride Water or steam Air, alcohols, water Formic acid, HF, inorganic bases, metals, oxidants, water Organic materials Potassium, ruthenium tetroxide, sodium, water Acetic acid, aluminum, chromyl dichloride, dimethylsulfoxide, hydroxylamine, lead dioxide, nitric acid, nitrous acid, organic matter, potassium, sodium water... [Pg.1480]

In 1970, the first rhodium-based acetic acid production unit went on stream in Texas City, with an annual capacity of 150 000 tons. Since that time, the Monsanto process has formed the basis for most new capacities such that, in 1991, it was responsible for about 55% of the total acetic acid capacity worldwide. In 1986, B.P. Chemicals acquired the exclusive licensing rights to the Monsanto process, and 10 years later announced its own carbonylation iridium/ruthenium/iodide system [7, 8] (Cativa ). Details of this process, from the viewpoint of its reactivity and mechanism, are provided later in this chapter. A comparison will also be made between the iridium- and rhodium-based processes. Notably, as the iridium system is more stable than its rhodium counterpart, a lower water content can be adopted which, in turn, leads to higher reaction rates, a reduced formation of byproducts, and a better yield on CO. [Pg.196]

Solutions of ruthenium carbonyl complexes in acetic acid solvent under 340 atm of 1 1 H2/CO are stable at temperatures up to about 265°C (166). Reactions at higher temperatures can lead to the precipitation of ruthenium metal and the formation of hydrocarbon products. Bradley has found that soluble ruthenium carbonyl complexes are unstable toward metallization at 271°C under 272 atm of 3 2 H2/CO [109 atm CO partial pressure (165)]. Solutions under these conditions form both methanol and alkanes, products of homogeneous and heterogeneous catalysis, respectively. Reactions followed with time exhibited an increasing rate of alkane formation corresponding to the decreasing concentration of soluble ruthenium and methanol formation rate. Nevertheless, solutions at temperatures as high as 290°C appear to be stable under 1300 atm of 3 2 H2/CO. [Pg.381]

A mixed oxide of ruthenium, copper, iron and alumnium has been developed as a catalyst for the synthesis of aldehydes and ketones from alcohols.258 Oxidation of chiral secondary 1,2-diols with 2,3-dichloro-5,6-dicyano-l,4-benzoquinone under ultrasound wave promotion leads to the selective oxidation of benzylic or allylic hydroxyl group. The configuration of the adjacent chiral centre is retained.259 The kinetics of oxidation of ethylbenzene in the presence of acetic anhydride have been studied.260... [Pg.115]

Recently, it was shown that the metathesis catalyst RuCl2(PCy3)2(=CHPh), where Cy is cyclohexyl, reacted in refluxing toluene with phenylacetylene to produce a ruthenium vinylidene species which promoted the regioselective dimerization of phenylacetylene into ( )-1,4-diphenylbutenyne [56]. The addition of 1 Eq acetic acid did not lead to enol esters but to a faster reaction and the stereoselective dimerization of phenylacetylene into the Z dimer. [Pg.140]

Although a number of different reagents have been discovered for the selective oxidation of ethers, e.g. halogens, iodine tris(trifluoroacetate), trichloroisocyanuric acid, UFs, A(,N-dibromobenzenesul-fonamide and lead tetraacetate, few have assumed any synthetic importance. Of these, the most significant are the metallic oxidants chromic acid and ruthenium tetroxide. DDQ has also been widely used for the oxidative d rotection of benzyl ethers. It is the aim of this chapter to review the latest developments in ether oxidation by these, and other reagents, with particular emphasis on chemo- and regio-selectivity. Several reviews on the subject have appeared previously. " The related oxidation of acetals has been reviewed recently" and will not be dealt with here. [Pg.235]

The relative reactivity of primary and secondary positions adjacent to oxygen can be strongly dependent on the nature of the oxidant. For example, treatment of the methyl ethers (8) and (10) with chromium trioxide in acetic acid leads to the formation of the formates (9) and (11), respectively (equations 13 and 14). In direct contrast, n-decyl methyl ether is oxidized exclusively to methyl n-decanoate (83% yield) by ruthenium tetroxide (equation 11). Under similar reaction conations, 3 -cholestanol methyl ether gives cholestan-3-one as the mqjor product, togedier with traces of the corresponding formate. Therefore, at least in the case of ruthenium tetroxide, primary positions appear to be more reactive than tertiary. [Pg.239]

The diols (97) from asymmetric dil droxylation are easily converted to cyclic sii e esters (98) and thence to cyclic sulfate esters (99).This two-step process, reaction of the diol (97) with thionyl chloride followed by ruthenium tetroxide catalyzed oxidation, can be done in one pot if desired and transforms the relatively unreactive diol into an epoxide mimic, ue. the 1,2-cyclic sulfate (99), which is an excellent electrophile. A survey of reactions shows that cyclic sulfates can be opened by hydride, azide, fluoride, thiocyanide, carboxylate and nitrate ions. Benzylmagnesium chloride and thie anion of dimethyl malonate can also be used to open the cyclic sulfates. Opening by a nucleophile leads to formation of an intermediate 3-sidfate aiuon (100) which is easily hydrolyzed to a -hydroxy compound (101). Conditions for cat ytic acid hydrolysis have been developed that allow for selective removal of the sulfate ester in the presence of other acid sensitive groups such as acetals, ketals and silyl ethers. [Pg.431]


See other pages where Ruthenium lead acetate is mentioned: [Pg.80]    [Pg.381]    [Pg.55]    [Pg.182]    [Pg.1025]    [Pg.206]    [Pg.247]    [Pg.499]    [Pg.231]    [Pg.582]    [Pg.242]    [Pg.329]    [Pg.104]    [Pg.226]    [Pg.284]    [Pg.354]    [Pg.607]    [Pg.185]    [Pg.1035]    [Pg.289]    [Pg.20]    [Pg.410]    [Pg.271]    [Pg.189]    [Pg.442]    [Pg.433]    [Pg.384]    [Pg.284]    [Pg.127]    [Pg.213]    [Pg.131]    [Pg.885]    [Pg.373]    [Pg.586]    [Pg.143]    [Pg.244]    [Pg.896]   
See also in sourсe #XX -- [ Pg.381 ]




SEARCH



Lead acetate

Ruthenium acetates

© 2024 chempedia.info