Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ruthenium complexes substitution reactions

Base-induced cycloaddition of TosMlC 37 to N-sulfonylaldimines 36 affords 4(5)-monosubstituted imidazoles 38 from which the parent imidazoles 39 can be prepared <97T11355>. This type of chemistry has been extended to reaction with arylazosulfones <97T2125>. N-Sulfonyl-2-imidazolines are derived from the ruthenium complex catalyzed reaction between isocyanoacetate and analogs of 36 <97JOC1799>. Cycloaddition of ylide 40 with trifluoroacetonitrile gives trifluoromethyl substituted imidazolines <97TL4359>. [Pg.157]

A number of reviews contain relevant material such as those on dimolybdenum and ditungsten complexes, substitution reactions of chromium complexes, the reactivity of complexes containing multiple bonds between metal atoms, model reactions of coupling ieactions2 5, and in a review principally on ruthenium chemistry.216... [Pg.218]

The pentammine aqua ion [Ru(NH3)j(H20)]2+, best made by zinc amalgam reduction and aquation of [Ru(NH3)5C1]2+, undergoes extensively studied substitution reactions first order in both the ruthenium complex and the incoming ligand (e.g. NH3, py) and is a convenient source of other... [Pg.22]

Besides ruthenium porphyrins (vide supra), several other ruthenium complexes were used as catalysts for asymmetric epoxidation and showed unique features 114,115 though enantioselectivity is moderate, some reactions are stereospecific and treats-olefins are better substrates for the epoxidation than are m-olcfins (Scheme 20).115 Epoxidation of conjugated olefins with the Ru (salen) (37) as catalyst was also found to proceed stereospecifically, with high enantioselectivity under photo-irradiation, irrespective of the olefmic substitution pattern (Scheme 21).116-118 Complex (37) itself is coordinatively saturated and catalytically inactive, but photo-irradiation promotes the dissociation of the apical nitrosyl ligand and makes the complex catalytically active. The wide scope of this epoxidation has been attributed to the unique structure of (37). Its salen ligand adopts a deeply folded and distorted conformation that allows the approach of an olefin of any substitution pattern to the intermediary oxo-Ru species.118 2,6-Dichloropyridine IV-oxide (DCPO) and tetramethylpyrazine /V. V -dioxide68 (TMPO) are oxidants of choice for this epoxidation. [Pg.222]

Kondo and Watanabe developed allylations of various types of aldehydes and oximes by using nucleophilic (7r-allyl)ruthenium(ll) complexes of type 154 bearing carbon monoxide ligands (Equation (29)).345 These 73-allyl-ruthenium complexes 154 are ambiphilic reagents and the presence of the carbon monoxide ligands proved to be essential to achieve catalytic allylation reactions. Interestingly, these transformations occur with complete regioselectivity only the more substituted allylic terminus adds to the aldehyde. [Pg.440]

The greater reactivity of terminal olefins compared to their more hindered di-and tri-substituted counterparts became evident in the model studies (Sect. 2.2.1) and in the total synthesis of epothilones A, B and E (Sects. 2.2.2-2.2.4). Suitably positioned disubstituted olefins can, however, participate in RCM reactions employing the molybdenum initiator 1 [19], and this is demonstrated in the total synthesis of epothilone B (5) (Sect. 2.2.3). As expected this transformation proved impossible using the ruthenium complex 3. [Pg.101]

For the synthesis of carbohydrate-substituted block copolymers, it might be expected that the addition of acid to the polymerization reactions would result in a rate increase. Indeed, the ROMP of saccharide-modified monomers, when conducted in the presence of para-toluene sulfonic acid under emulsion conditions, successfully yielded block copolymers [52]. A key to the success of these reactions was the isolation of the initiated species, which resulted in its separation from the dissociated phosphine. The initiated ruthenium complex was isolated by starting the polymerization in acidic organic solution, from which the reactive species precipitated. The solvent was removed, and the reactive species was washed with additional degassed solvent. The polymerization was completed under emulsion conditions (in water and DTAB), and additional blocks were generated by the sequential addition of the different monomers. This method of polymerization was successful for both the mannose/galactose polymer and for the mannose polymer with the intervening diol sequence (Fig. 16A,B). [Pg.232]

The chemistry of these compounds has not been investigated in detail. Scheme 12 summarizes some of the chemistry that has been established for the ruthenium complex RugClCO) (192). In general, the octahedral metal-carbido skeleton is maintained, substitution reactions occurring with phosphine, phosphites, and arsine ligands. Base attack leads to the production of the anion [Ru8C(CO)16P, which is... [Pg.334]

The Ru(IV)/Ru(III) redox potential is 0.78 V, so that Ru(III) or even Ru(II) species may be present in vivo. Indeed, the related Ru(III) complex 32 is also active (171), and the pendant arms in these octahedral polyaminocarboxylate complexes increase the rate of substitution reactions. Complex 32 binds rapidly to the blood proteins albumin and transferrin (172), and the ruthenium ion appears to remain in the... [Pg.212]

L. R. Allen, P. P. Craft, B. Durham, and J. Walsh, Substitution reactions of Ruthenium (II) complexes containing 2,2-bipyridine and 1,10-phenanthroline, Inorg. Chem. 26, 53-56(1987). [Pg.105]

Aromatics occur as ligands in ruthenium complexes that are used for hydrogen transfer reaction, i.e. two hydrogen atoms are transferred from a donor molecule, e.g. an alcohol, to a ketone, producing another alcohol. Especially the enantiospecific variant has become important, see Chapter 4.4. The substitution pattern of the aromatic compound influences the enantioselectivity of the reaction. [Pg.20]

The preparation of cyclopropanes by intermolecular cyclopropanation with acceptor-substituted carbene complexes is one of the most important C-C-bond-forming reactions. Several reviews [995,1072-1074,1076,1077,1081] and monographs have appeared. In recent decades chemists have focused on stereoselective intermolecular cyclopropanations, and several useful catalyst have been developed for this purpose. Complexes which catalyze intermolecular cyclopropanations with high enantiose-lectivity include copper complexes [1025,1026,1028,1029,1031,1373,1398-1400], cobalt complexes [1033-1035], ruthenium porphyrin complexes [1041,1042,1230], C2-symmetric ruthenium complexes [948,1044,1045], and different types of rhodium complexes [955,998,999,1002-1004,1010,1062,1353,1401-1405], Particularly efficient catalysts for intermolecular cyclopropanation are C2-symmetric cop-per(I) complexes, as those shown in Figure 4.20. These complexes enable the formation of enantiomerically enriched cyclopropanes with enantiomeric excesses greater than 99%. Illustrative examples of intermolecular cyclopropanations are listed in Table 4.24. [Pg.224]


See other pages where Ruthenium complexes substitution reactions is mentioned: [Pg.224]    [Pg.203]    [Pg.274]    [Pg.820]    [Pg.1457]    [Pg.199]    [Pg.204]    [Pg.95]    [Pg.102]    [Pg.37]    [Pg.455]    [Pg.141]    [Pg.169]    [Pg.8]    [Pg.25]    [Pg.33]    [Pg.497]    [Pg.174]    [Pg.11]    [Pg.425]    [Pg.119]    [Pg.292]    [Pg.292]    [Pg.300]    [Pg.869]    [Pg.107]    [Pg.348]    [Pg.49]    [Pg.101]    [Pg.52]    [Pg.560]    [Pg.628]    [Pg.653]    [Pg.71]    [Pg.217]    [Pg.218]    [Pg.225]   
See also in sourсe #XX -- [ Pg.208 ]




SEARCH



Complex substitution reactions

Complexes substitution

Ligand substitution reactions ruthenium complexes

Ruthenium complexes reactions

Ruthenium complexes substitutions

Ruthenium reactions

© 2024 chempedia.info