Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ruthenium complexes, oxidized

High-valent ruthenium oxides (e. g., Ru04) are powerful oxidants and react readily with olefins, mostly resulting in cleavage of the double bond [132]. If reactions are performed with very short reaction times (0.5 min.) at 0 °C it is possible to control the reactivity better and thereby to obtain ds-diols. On the other hand, the use of less reactive, low-valent ruthenium complexes in combination with various terminal oxidants for the preparation of epoxides from simple olefins has been described [133]. In the more successful earlier cases, ruthenium porphyrins were used as catalysts, especially in combination with N-oxides as terminal oxidants [134, 135, 136]. Two examples are shown in Scheme 6.20, terminal olefins being oxidized in the presence of catalytic amounts of Ru-porphyrins 25 and 26 with the sterically hindered 2,6-dichloropyridine N-oxide (2,6-DCPNO) as oxidant. The use... [Pg.221]

Asymmetric epoxidation of olefins with ruthenium catalysts based either on chiral porphyrins or on pyridine-2,6-bisoxazoline (pybox) ligands has been reported (Scheme 6.21). Berkessel et al. reported that catalysts 27 and 28 were efficient catalysts for the enantioselective epoxidation of aryl-substituted olefins (Table 6.10) [139]. Enantioselectivities of up to 83% were obtained in the epoxidation of 1,2-dihydronaphthalene with catalyst 28 and 2,6-DCPNO. Simple olefins such as oct-l-ene reacted poorly and gave epoxides with low enantioselectivity. The use of pybox ligands in ruthenium-catalyzed asymmetric epoxidations was first reported by Nishiyama et al., who used catalyst 30 in combination with iodosyl benzene, bisacetoxyiodo benzene [PhI(OAc)2], or TBHP for the oxidation of trons-stilbene [140], In their best result, with PhI(OAc)2 as oxidant, they obtained trons-stilbene oxide in 80% yield and with 63% ee. More recently, Beller and coworkers have reexamined this catalytic system, finding that asymmetric epoxidations could be perfonned with ruthenium catalysts 29 and 30 and 30% aqueous hydrogen peroxide (Table 6.11) [141]. Development of the pybox ligand provided ruthenium complex 31, which turned out to be the most efficient catalyst for asymmetric... [Pg.222]

The NO ligand can be supplied by nitric oxide itself, but there are many other sources such as nitrite, nitrate or nitric acid, nitrosonium salts or N-methyl-7V-nitrosotoluene-p-sulphonamide (MNTS). The introduction of a nitrosyl group into a ruthenium complex is an ever-present possibility. [Pg.43]

The three steps 32-34 have been suggested77 to be equilibria, and the overall equilibrium must lie far to the left because no adduct 23 is found in the reaction mixture when the reaction of sulfonyl chloride with olefin is carried out in the absence of a tertiary amine. A second possible mechanism involving oxidative addition of the arenesulfonyl halide to form a ruthenium(IV) complex and subsequent reductive elimination of the ruthenium complex hydrochloride, [HRulvCl], was considered to be much less likely. [Pg.1105]

Sheldon et al. have combined a KR catalyzed by CALB with a racemization catalyzed by a Ru(II) complex in combination with TEMPO (2,2,6,6-tetramethylpi-peridine 1-oxyl free radical) [28]. They proposed that racemization involved initial ruthenium-catalyzed oxidation of the alcohol to the corresponding ketone, with TEMPO acting as a stoichiometric oxidant. The ketone was then reduced to racemic alcohol by ruthenium hydrides, which were proposed to be formed under the reaction conditions. Under these conditions, they obtained 76% yield of enantiopure 1-phenylethanol acetate at 70° after 48 hours. [Pg.96]

Besides ruthenium porphyrins (vide supra), several other ruthenium complexes were used as catalysts for asymmetric epoxidation and showed unique features 114,115 though enantioselectivity is moderate, some reactions are stereospecific and treats-olefins are better substrates for the epoxidation than are m-olcfins (Scheme 20).115 Epoxidation of conjugated olefins with the Ru (salen) (37) as catalyst was also found to proceed stereospecifically, with high enantioselectivity under photo-irradiation, irrespective of the olefmic substitution pattern (Scheme 21).116-118 Complex (37) itself is coordinatively saturated and catalytically inactive, but photo-irradiation promotes the dissociation of the apical nitrosyl ligand and makes the complex catalytically active. The wide scope of this epoxidation has been attributed to the unique structure of (37). Its salen ligand adopts a deeply folded and distorted conformation that allows the approach of an olefin of any substitution pattern to the intermediary oxo-Ru species.118 2,6-Dichloropyridine IV-oxide (DCPO) and tetramethylpyrazine /V. V -dioxide68 (TMPO) are oxidants of choice for this epoxidation. [Pg.222]

Furthermore, the utilization of preformed films of polypyrrole functionalized by suitable monomeric ruthenium complexes allows the circumvention of problems due to the moderate stability of these complexes to aerial oxidation when free in solution. A similar CO/HCOO-selectivity with regards to the substitution of the V-pyrrole-bpy ligand by an electron-with-drawing group is retained in those composite materials.98 The related osmium-based redox-active polymer [Os°(bpy)(CO)2] was prepared, and is also an excellent electrocatalyst for the reduction of C02 in aqueous media.99 However, the selectivity toward CO vs. HCOO- production is lower. [Pg.481]

In contrast the oxo-ruthenium complex c ,c -[ (bpy)2Runl(0H2) 2(//-0)]4+ and some of its derivatives are known to be active catalysts for the chemical or electrochemical oxidation of water to dioxygen.464-472 Many studies have been reported473 181 on the redox and structural chemistry of this complex for understanding the mechanism of water oxidation. Based on the results of pH-dependent electrochemical measurements, the basic structural unit is retained in the successive oxidation states from Rum-0 Ru111 to Ruv O Ruv.466... [Pg.497]

Among the metal complexes used in electrocatalytic oxidation of organic compounds, polypyridyl oxo-ruthenium complexes have attracted special attention,494"508 especially [RuIV(terpy)(bpy)0]2+.495 197,499,500,502,504 This high oxidation state is reached from the corresponding Run-aqua complex by sequential oxidation and proton loss (Equations (75) and (76)). [Pg.498]

A number of mechanistic pathways have been identified for the oxidation, such as O-atom transfer to sulfides, electrophilic attack on phenols, hydride transfer from alcohols, and proton-coupled electron transfer from hydroquinone. Some kinetic studies indicate that the rate-determining step involves preassociation of the substrate with the catalyst.507,508 The electrocatalytic properties of polypyridyl oxo-ruthenium complexes have been also applied with success to DNA cleavage509,5 and sugar oxidation.511... [Pg.499]

Based on extensive screening of hundreds of ruthenium complexes, it was discovered that the sensitizer s excited state oxidation potential should be negative of at least —0.9 V vs. SCE, in order to inject electrons efficiently into the Ti02 conduction band. The ground state oxidation potential should be about 0.5 V vs. SCE, in order to be regenerated rapidly via electron donation from the electrolyte (iodide/triiodide redox system) or a hole conductor. A significant decrease in electron injection efficiencies will occur if the excited and ground state redox potentials are lower than these values. [Pg.728]


See other pages where Ruthenium complexes, oxidized is mentioned: [Pg.306]    [Pg.353]    [Pg.306]    [Pg.353]    [Pg.178]    [Pg.203]    [Pg.80]    [Pg.201]    [Pg.204]    [Pg.73]    [Pg.1457]    [Pg.1566]    [Pg.227]    [Pg.60]    [Pg.255]    [Pg.136]    [Pg.186]    [Pg.276]    [Pg.37]    [Pg.150]    [Pg.343]    [Pg.141]    [Pg.245]    [Pg.268]    [Pg.615]    [Pg.740]    [Pg.749]    [Pg.179]    [Pg.153]    [Pg.161]    [Pg.22]    [Pg.307]    [Pg.497]    [Pg.338]   


SEARCH



Aerobic oxidation ruthenium complexes

Nitric oxide catalysts, ruthenium complexes

Nitric oxide ruthenium complexes

Oxidation ruthenium

Oxidation with Ruthenium Complex Catalysts and Oxidants

Propylene oxide catalysts, ruthenium complexes

Ruthenium complexes alcohol oxidation

Ruthenium complexes nitrous oxide

Ruthenium complexes oxidation

Ruthenium complexes oxidation catalysts

Ruthenium complexes, oxidized reaction products

Ruthenium nitrosyl complexes nitric oxide

Ruthenium oxide

The Chemistry of Ruthenium Oxidation Complexes

© 2024 chempedia.info