Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Rubber limitations

IR, EPDM, NBR limited sol. in BR and SBR Uses Nonstaining antioxidant and antiozonant in rubber limited sol. in syn. rubbers N-(1,4-Dimethylpentyl)-N -phenyl-p-phenylenediamine CAS 3081-01-4... [Pg.1447]

The high polarity of urethane rubber limits the choice of plasticizers to those having polar groupings or a high aromatic content. The choice of a... [Pg.206]

High-intensity internal mixers are used for incorporating particulate additives into most polymer types, including thermoplastics, thermosets and rubbers. Limitations, such as the manual intervention generally encountered with two-roll mills, can be overcome, whilst maintaining a significant dispersive and distributive mixing capability. [Pg.222]

Certain environmental properties of rubber limit its usefulness. Being hydrocarbon material, rubber fibers do not absorb moisture and have a regain of 0.0% under standard conditions. The fiber is a poor heat conductor and a good heat and electrical insulator. The fiber is readily swollen by ketones, alcohol, hydrocarbons, and oils and softens if heated above 100°C. [Pg.110]

Plastics and Elastomers. Common plastics and elastomers (qv) show exceUent resistance to hydrochloric acid within the temperature limits of the materials. Soft natural mbber compounds have been used for many years as liners for concentrated hydrochloric acid storage tanks up to a temperature of 60°C (see Rubber, natural). SemUiard mbber is used as linings in pipe and equipment at temperatures up to 70°C and hard mbber is used for pipes up to 50°C and pressures up to 345 kPa (50 psig). When contaminants are present, synthetic elastomers such as neoprene, nitrile, butyl. [Pg.446]

Butyl mbber, a copolymer of isobutjiene with 0.5—2.5% isoprene to make vulcanization possible, is the most important commercial polymer made by cationic polymerization (see Elastomers, synthetic-butyl rubber). The polymerization is initiated by water in conjunction with AlCl and carried out at low temperature (—90 to —100° C) to prevent chain transfer that limits the molecular weight (1). Another important commercial appHcation of cationic polymerization is the manufacture of polybutenes, low molecular weight copolymers of isobutylene and a smaller amount of other butenes (1) used in adhesives, sealants, lubricants, viscosity improvers, etc. [Pg.244]

Special producer limits and related controls are also imposed by the Rubber Research Institute of Malaysia (RRIM) to provide an additional safeguard. [Pg.267]

Rubber and Synthetic Elastomers. For many years nondecorative coated fabrics consisted of natural mbber on cotton cloth. Natural mbber is possibly the best all-purpose mbber but some characteristics, such as poor resistance to oxygen and ozone attack, reversion and poor weathering, and low oil and heat resistance, limit its use to special appHcation areas (see Elastomers, synthetic Rubber, natural). [Pg.296]

Nitrile Rubber (NBR). This is the most solvent-resistant of the synthetic elastomers, except for Thiokol, which, however, has rather severe limitations. NBR was developed both in Germany and the United States by private industry prior to World War II. It is a copolymer of butadiene, CH2=CH—CH=CH2, and acrylonitrile, CH2=CHCN, corresponding to the molecular stmcture shown in Table 1. [Pg.469]

FIG. 5-12 Variation of absorptivity with temperature of radiation source. (1) Slate composition roofing. (2) Linoleum, red brown. (3) Asbestos slate. (4) Soft rubber, gray. (5) Concrete. (6) Porcelain. (7) Vitreous enamel, white. (8) Red brick. (9) Cork. (10) White dutch tile. (11) White chamotte. (12) MgO, evaporated. (13) Anodized aluminum. (14) Aluminum paint. (15) Polished aluminum. (16) Graphite. The two dashed lines bound the limits of data on gray paving brick, asbestos paper, wood, various cloths, plaster of parts, lithopone, and paper. To convert degrees Ranldne to kelvins, multiply by (5.556)(10 ). [Pg.572]

The rubbers may be vulcanised by conventional accelerated sulphur systems and also by peroxides. The vulcanisates are widely used in petrol hose and seal applications. Two limiting factors of the materials as rubbers are the tendency to harden in the presence of sulphur-bearing oils, particularly at elevated temperatures (presumably due to a form of vulcanisation), and the rather limited heat resistance. The latter may be improved somewhat by Judicious compounding to give vulcanisates that may be used up to 150°C. When for the above reasons nitrile rubbers are unsatisfactory it may be necessary to consider acrylic rubbers (Chapter 15), epichlorohydrin rubbers (Chapter 19) and in more extreme conditions fluororubbers (Chapter 13). [Pg.294]

The high thermal stability of the carbon-fluorine bond has led to considerable interest in fluorine-containing polymers as heat-resistant plastics and rubbers. The first patents, taken out by IG Farben in 1934, related to polychlorotri-fluoroethylene (PCTFE) (Figure 13.1 (a)), these materials being subsequently manufactured in Germany and the United States. PCTFE has been of limited application and it was the discovery of polytetrafluoroethylene (PTFE) (Figure... [Pg.363]

Styrene is a colourless mobile liquid with a pleasant smell when pure but with a disagreeable odour due to traces of aldehydes and ketones if allowed to oxidise by exposure to air. It is a solvent for polystyrene and many synthetic rubbers, including SBR, but has only a very limited mutual solubility in water. Table 16.1 shows some of the principal properties of pure styrene. [Pg.429]

The commercial success of ABS polymers has led to the investigation of many other polyblend materials. In some cases properties are exhibited which are superior to those of ABS and some of the materials are commercially available. For example, the opacity of ABS has led to the development of blends in which the glassy phase is modified to give transparent polymers whilst the limited light aging has been countered by the use of rubbers other than polybutadiene. [Pg.448]

In Chapters 3 and 11 reference was made to thermoplastic elastomers of the triblock type. The most well known consist of a block of butadiene units joined at each end to a block of styrene units. At room temperature the styrene blocks congregate into glassy domains which act effectively to link the butadiene segments into a rubbery network. Above the Tg of the polystyrene these domains disappear and the polymer begins to flow like a thermoplastic. Because of the relatively low Tg of the short polystyrene blocks such rubbers have very limited heat resistance. Whilst in principle it may be possible to use end-blocks with a higher Tg an alternative approach is to use a block copolymer in which one of the blocks is capable of crystallisation and with a well above room temperature. Using what may be considered to be an extension of the chemical technology of poly(ethylene terephthalate) this approach has led to the availability of thermoplastic polyester elastomers (Hytrel—Du Pont Amitel—Akzo). [Pg.737]

Many isocyanates have good adhesive properties and one of them, triphenyl-methane-pp /7"-triyl tri-isocyanate, has been successfully used for bonding of rubber. Isocyanates are, however, rather brittle and somewhat limited in application. Somewhat tougher products are obtained from adhesives involving both polyols and isocyanates, i.e. polyurethane-type materials. The major application of these materials to date is in the boot and shoe industry. [Pg.805]

The elastomers consist of very high moleculcU weight (-0.5 X 10 ) linecu gums cross-linked after fabrication. In order to achieve such polymers it is necessary that very pure difunctional monomers be employed since the presence of monofunctional material will limit the molecular weight while trifunctional material will lead to cross-linking. Where dimethylsilicone rubbers are being prepared, the cyclic tetramer, octamethylcyclotetrasiloxane, which may be obtained free from mono- and trifunctional impurities, is often used. This tetramer occurs to the extent of about 25% during the hydrolysis of dichlorosilanes into polymers. [Pg.832]

The range of high-temperature rubbers is very small and limited to the silicones, already considered in this chapter, and certain fluororubbers. With both classes it is possible to produce polymers with lower interchain attraction and high backbone flexibility and at the same time produce polymers in which all the bonds have high dissociation energies and good resistance to oxidation. [Pg.841]


See other pages where Rubber limitations is mentioned: [Pg.42]    [Pg.55]    [Pg.50]    [Pg.331]    [Pg.250]    [Pg.42]    [Pg.55]    [Pg.50]    [Pg.331]    [Pg.250]    [Pg.408]    [Pg.421]    [Pg.15]    [Pg.219]    [Pg.265]    [Pg.270]    [Pg.113]    [Pg.367]    [Pg.298]    [Pg.968]    [Pg.1788]    [Pg.1830]    [Pg.2054]    [Pg.2461]    [Pg.934]    [Pg.254]    [Pg.207]    [Pg.73]    [Pg.229]    [Pg.278]    [Pg.282]    [Pg.288]    [Pg.289]    [Pg.357]    [Pg.417]    [Pg.554]    [Pg.835]    [Pg.846]   
See also in sourсe #XX -- [ Pg.2 ]




SEARCH



© 2024 chempedia.info