Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Rotary kilns sizing

In the early 1980s the preheater rotary kiln size reached a typical capacity of about 3000 (m)tpd. Further increasing of fhe oufpufs were limifed by a span life of fhe brick refractory lining of a rofary kiln shell wifh a diameter more of 6 m. The precalciner/preheater kilns were developed to reach production up to 10,000 (m)tpd and more, by splitting the total fuel input between the main burner and the auxiliary burners of an additional vertical vessel, called precalciner, located in between the rotary kiln section and the suspension preheater. [Pg.617]

SL/RN Process. In the SL/RN process (Fig. 4), sized iron ore, coal, and dolomite are fed to the rotary kiln wherein the coal is gasified and the iron ore is reduced. The endothermic heat of reduction and the sensible energy that is required to heat the reactants is provided by combustion of volatiles and carbon monoxide leaving the bed with air introduced into the free space above the bed. The temperature profile in the kiln is controlled by radial air ports in the preheat zone and axial air ports in the reduction zone. Part of the coal is injected through the centerline of the kiln at the discharge end. The hot reduced iron and char is discharged into an indirect rotary dmm cooler. The cooled product is screened and magnetically separated to remove char and ash. [Pg.429]

The iron carbide process is alow temperature, gas-based, fluidized-bed process. Sized iron oxide fines (0.1—1.0 mm) are preheated in cyclones or a rotary kiln to 500°C and reduced to iron carbide in a single-stage, fluidized-bed reactor system at about 590°C in a process gas consisting primarily of methane, hydrogen, and some carbon monoxide. Reduction time is up to 18 hours owing to the low reduction temperature and slow rate of carburization. The product has the consistency of sand, is very britde, and contains approximately 6% carbon, mostly in the form of Ee C. [Pg.431]

StUl another ore preparation is the nodulizing process where the ore is heated in a rotary kiln to incipient fusion. The tumbling action in the kiln causes the phosphate ore to cohere and form spheroidal agglomerates. Combustion of carbon monoxide from the furnaces is used along with supplemental fuel to supply heat to 1300—1500°C. A boring bar is used near the kiln discharge to aid in breaking up the fused ore. The material is then cooled, cmshed, and screened to the appropriate size for furnace feed. [Pg.350]

Another method iavolves an electric-arc vaporizer which is >2000° C before burning (25,32). One of the features of the process is a rapid quench of the hot gas flow to yield very fine oxide particles (<0.15 nm). This product is quite reactive and imparts accelerated cure rates to mbber. Internally fired rotary kilns are used extensively ia Canada and Europe and, to a limited extent, ia the United States (24). The burning occurs ia the kiln and the heat is sufficient to melt and vaporize the ziac. Because of the lower temperatures, the particles are coarser than those produced ia the other processes. In a fourth process, ziac metal which is purified ia a vertical refining column is burned. In essence, the purification is a distillation and impure ziac can be used to make extremely pure oxide. Also, a wide range of particle sizes is possible (33). [Pg.422]

Attrition Loss. The tendency of a support body to be reduced to powder is termed susceptibiHty to attrition, and the measurement of such susceptibiHty is termed attrition loss. Attrition can occur when support bodies mb against one another and abrade the surface, such as during calcination in a rotary kiln or sizing on moving screens. [Pg.194]

Coatiauous kilns were first used ia Germany at Knapsack (20) and later at Trostberg (21). In the Knapsack process, calcium carbide (0.75—2 mm ia size) is fed to a rotary kiln, 3 m ia diameter and 12 m long with 1% slope 1—2% calcium chloride is added to promote the reaction. The kiln produces 12—13 t fixed nitrogen per day. The product is granular and can be sold without further processiag. [Pg.368]

At the alumina plant, the bauxite ore is further crushed to the correct particle size for efficient extraction of the alumina through digestion by hot sodium hydroxide liquor. After removal of "red mud" (the insoluble part of the bauxite) and fine solids from the process liquor, aluminum trihydrate crystals are precipitated and calcined in rotary kilns or fluidized bed calciners to produce alumina (AljOj). Some alumina processes include a liquor purification step. [Pg.137]

The rotary kiln design allows for accepting a mix of high-chlorinated wastes (solvents, chlorinated tars, plastics). Such kilns are usually designed in relation to a specific optimal calorific value in the input. The input mix should be set in such a way that this optimal composition is approached (e.g., PVC waste and other waste streams with a lower calorific value). It is likely that a 100% input of PVC would lead to all kind of problems of temperature control due to its relatively high calorific value. Chlorine contents of over 50% can easily be accepted. A final demand is that the particle size should be 10 x 10 x 10 cm at maximum. This implies that sometimes waste has to be shredded before it can be put into the kiln. Other acceptance criteria have not been published in literature. [Pg.14]

Three different types of furnaces are generally in use for calcination. The shaft furnace is considered to be the most suited for calcining coarse limestone. Furnaces of the rotary kiln type are used for handling materials of mixed particle sizes and lumps which disintegrate during the process. Calcination can be carried out in a fluidized bed-reactor for materials of small and uniform particle size. These furnaces are usually fired with gas, oil or coke in some cases electric heating is resorted to. [Pg.348]

At the completion of the reaction, the aniline is separated from the iron oxides by steam distillation and the umeacted iron removed. The pigment is washed, filtered and dried, or calcined in rotary kilns to hematite (Plate 20.1, see p. XXXIX). Considerable control over pigment properties can be achieved in this process by varying the nature and concentration of the additives and the reaction rate the latter depends on pH, the rate of addition of iron and nitrobenzene and the type and particle size of the iron particles. Two advantages of this method are that a saleable byproduct, aniline, is produced and that there are no environmentally, harmful waste products. [Pg.528]

The zinc salt and BaS solutions are mixed thoroughly under controlled conditions (vessel geometry, temperature, pH, salt concentration, and stirring speed, see (a) in Fig. 20). The precipitated raw lithopone does not possess pigment properties. It is filtered off (b2) and dried (c) ca. 2 cm lumps of the material are calcined in a rotary kiln (d) directly heated with natural gas at 650-700 °C. Crystal growth is controlled by adding 1-2 wt% NaCl, 2 wt % Na2S04 and traces of Mg2 + (ca. 2000 ppm), and K+ (ca. 100-200 ppm). The temperature profile and residence time in the kiln are controlled to obtain ZnS with an optimum particle size of ca. 300 nm. [Pg.73]

Solid-State Reactions of Iron Compounds. Black iron oxides obtained from the Laux process (see below) or other processes may be calcined in rotary kilns with an oxidizing atmosphere under countercurrent flow to produce a wide range of different red colors, depending on the starting material. The pigments are ground to the desired particle size in pendular mills, pin mills, or jet mills, depending on their hardness and intended use. [Pg.85]

Nodulizing is another process of size enlargement by fusion. This employs a rotary kiln like those used for cement manufacture. The product is uniform, about 0.5 in. dia, and more dense than sinter. [Pg.363]

There is a wide choice of contacting methods and equipment for gas-solid reactions. As with other solids-handling problems, the solution finally adopted may depend very much on the physical condition of the reactants and products, i.e. particle size, any tendency of the particles to fuse together, ease of gas-solid separation, etc. One type of equipment, the rotary kiln, has already been mentioned (Chapter 2, Fig. 2.4) and some further types of equipment suitable for continuous operation are shown in Fig. 3.37. The concepts of macromixing in the solid phase and dispersion in the gas phase as discussed in the previous section will be involved in the quantitative treatment of such equipment. [Pg.186]

Particle Size and Desorption Rates. Bench-scale reactor studies of the desorption of toluene from single, 2- to 6-mm porous clay partides (14) showed desorption times that increased with the square of the particle radius, suggesting that diffusion controls the rate desorption. Parallel experiments performed in a small, pilot-scale rotary kiln at 300°C showed no effect of day partide size for diameters ranging from 0.4 to 7 mm. Additional single-partide studies with temperature profiles controlled to match those in the pilot-scale kiln had desorption times that were a factor of 2—3 shorter for the range of sizes studied (15). Hence, at the conditions examined, intrapartide mass transfer controlled the rate of desorption when single particles were involved and interpartide mass transfer controlled in a bed of particles in a rotary kiln. These results apply to full-scale kilns. As particle size is increased, intraparticle resistances to heat and mass transfer eventually begin to dominate. [Pg.48]


See other pages where Rotary kilns sizing is mentioned: [Pg.23]    [Pg.48]    [Pg.48]    [Pg.414]    [Pg.171]    [Pg.348]    [Pg.9]    [Pg.134]    [Pg.155]    [Pg.160]    [Pg.26]    [Pg.530]    [Pg.531]    [Pg.154]    [Pg.252]    [Pg.492]    [Pg.945]    [Pg.407]    [Pg.526]    [Pg.26]    [Pg.530]    [Pg.531]    [Pg.80]    [Pg.90]    [Pg.23]    [Pg.240]    [Pg.351]    [Pg.9]    [Pg.48]    [Pg.414]    [Pg.210]    [Pg.157]    [Pg.36]   
See also in sourсe #XX -- [ Pg.19 ]




SEARCH



Kilning

Rotary kiln

© 2024 chempedia.info