Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ring olefin metathesis

V. Dragutan, A. T. Balaban, and M. Dimonie, Olefin Metathesis and Ring-OpeningPolymeris tion of Cycloolefins,John Wiley Sons, Ltd., Chichester, U.K., 1985. [Pg.433]

Acyclic diene molecules are capable of undergoing intramolecular and intermolec-ular reactions in the presence of certain transition metal catalysts molybdenum alkylidene and ruthenium carbene complexes, for example [50, 51]. The intramolecular reaction, called ring-closing olefin metathesis (RCM), affords cyclic compounds, while the intermolecular reaction, called acyclic diene metathesis (ADMET) polymerization, provides oligomers and polymers. Alteration of the dilution of the reaction mixture can to some extent control the intrinsic competition between RCM and ADMET. [Pg.328]

Grubbs, R., Risse, W. and Novae, B. The Development of Well-defined Catalysts for Ring-Opening Olefin Metathesis. Vol. 102, pp. 47-72. [Pg.177]

Non-heteroatom-stabilised Fischer carbene complexes also react with alkenes to give mixtures of olefin metathesis products and cyclopropane derivatives which are frequently the minor reaction products [19]. Furthermore, non-heteroatom-stabilised vinylcarbene complexes, generated in situ by reaction of an alkoxy- or aminocarbene complex with an alkyne, are able to react with different types of alkenes in an intramolecular or intermolecular process to produce bicyclic compounds containing a cyclopropane ring [20]. [Pg.65]

Abstract For many years after its discovery, olefin metathesis was hardly used as a synthetic tool. This situation changed when well-defined and stable carbene complexes of molybdenum and ruthenium were discovered as efficient precatalysts in the early 1990s. In particular, the high activity and selectivity in ring-closure reactions stimulated further research in this area and led to numerous applications in organic synthesis. Today, olefin metathesis is one of the... [Pg.223]

As stated above, olefin metathesis is in principle reversible, because all steps of the catalytic cycle are reversible. In preparatively useful transformations, the equilibrium is shifted to one side. This is most commonly achieved by removal of a volatile alkene, mostly ethene, from the reaction mixture. An obvious and well-established way to classify olefin metathesis reactions is depicted in Scheme 2. Depending on the structure of the olefin, metathesis may occur either inter- or intramolecularly. Intermolecular metathesis of two alkenes is called cross metathesis (CM) (if the two alkenes are identical, as in the case of the Phillips triolefin process, the term self metathesis is sometimes used). The intermolecular metathesis of an a,co-diene leads to polymeric structures and ethene this mode of metathesis is called acyclic diene metathesis (ADMET). Intramolecular metathesis of these substrates gives cycloalkenes and ethene (ring-closing metathesis, RCM) the reverse reaction is the cleavage of a cyclo-... [Pg.225]

Scheme 2 Different modes of the olefin metathesis reaction cross metathesis (CM), ringclosing metathesis (RCM), ring-opening metathesis (ROM), acyclic diene metathesis polymerization (ADMET), and ring-opening metathesis polymerization (ROMP)... Scheme 2 Different modes of the olefin metathesis reaction cross metathesis (CM), ringclosing metathesis (RCM), ring-opening metathesis (ROM), acyclic diene metathesis polymerization (ADMET), and ring-opening metathesis polymerization (ROMP)...
We will focus on the development of ruthenium-based metathesis precatalysts with enhanced activity and applications to the metathesis of alkenes with nonstandard electronic properties. In the class of molybdenum complexes [7a,g,h] recent research was mainly directed to the development of homochi-ral precatalysts for enantioselective olefin metathesis. This aspect has recently been covered by Schrock and Hoveyda in a short review and will not be discussed here [8h]. In addition, several important special topics have recently been addressed by excellent reviews, e.g., the synthesis of medium-sized rings by RCM [8a], applications of olefin metathesis to carbohydrate chemistry [8b], cross metathesis [8c,d],enyne metathesis [8e,f], ring-rearrangement metathesis [8g], enantioselective metathesis [8h], and applications of metathesis in polymer chemistry (ADMET,ROMP) [8i,j]. Application of olefin metathesis to the total synthesis of complex natural products is covered in the contribution by Mulzer et al. in this volume. [Pg.228]

A systematic investigation of the ring-closing metathesis of 138 in the synthesis of a range of fourteen-membered ring lactams 139 and lactones has been reported by Weiler. The geometry of the resulting double bond was determined, the position of the olefin was broadly varied. The ratios obtained were compared to that derived from molecular mechanics calculations, Eq. (15), Table 4 [34]. [Pg.147]

ROMP is without doubt the most important incarnation of olefin metathesis in polymer chemistry [98]. Preconditions enabling this process involve a strained cyclic olefinic monomer and a suitable initiator. The driving force in ROMP is the release of ring strain, rendering the last step in the catalytic cycle irreversible (Scheme 3.6). The synthesis of well-defined polymers of complex architectures such as multi-functionaUsed block-copolymers is enabled by living polymerisation, one of the main benefits of ROMP [92, 98]. [Pg.82]

Several transition metal complexes can catalyze the exchange of partners of two double bonds. Known as the olefin metathesis reaction, this process can be used to close or open rings, as well to interchange double-bond components. [Pg.761]

Scheme 8.16. Examples of the Ring-Closing Olefin Metathesis Reaction... Scheme 8.16. Examples of the Ring-Closing Olefin Metathesis Reaction...
The synthesis in Scheme 13.49 features use of an enantioselective allylic boronate reagent derived from diisopropyl tartrate to establish the C(4) and C(5) stereochemistry. The ring is closed by an olefin metathesis reaction. The C(2) methyl group was introduced by alkylation of the lactone enolate. The alkylation is not stereoselective, but base-catalyzed epimerization favors the desired stereoisomer by 4 1. [Pg.1207]


See other pages where Ring olefin metathesis is mentioned: [Pg.477]    [Pg.429]    [Pg.189]    [Pg.13]    [Pg.63]    [Pg.225]    [Pg.258]    [Pg.258]    [Pg.271]    [Pg.272]    [Pg.275]    [Pg.325]    [Pg.342]    [Pg.369]    [Pg.432]    [Pg.458]    [Pg.1499]    [Pg.144]    [Pg.145]    [Pg.146]    [Pg.147]    [Pg.158]    [Pg.215]    [Pg.205]    [Pg.205]    [Pg.107]    [Pg.63]    [Pg.64]    [Pg.65]    [Pg.75]    [Pg.82]    [Pg.85]    [Pg.308]    [Pg.391]    [Pg.765]    [Pg.1222]    [Pg.1223]    [Pg.1329]   
See also in sourсe #XX -- [ Pg.91 , Pg.92 , Pg.93 , Pg.94 , Pg.95 ]




SEARCH



Olefin metathesis

Olefine metathesis

Ring metathesis

© 2024 chempedia.info