Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Rhodium complex catalysts mechanism

The kinetics and mechanism of the carbonylation of methanol to acetic acid using Monsanto s rhodium complex catalyst has been extensively studied. The reaction is first order in both rhodium and CH3I promoter but zero order in CO pressure. It is believed that oxidative addition of CH3I is the rate-controlling step in this process. This is a unique example of designing a catalyst system with commercial viability in which the substrate (methanol) is first converted to CH3I... [Pg.232]

A simplified mechanism for the hydroformylation reaction using the rhodium complex starts by the addition of the olefin to the catalyst (A) to form complex (B). The latter rearranges, probably through a four-centered intermediate, to the alkyl complex (C). A carbon monoxide insertion gives the square-planar complex (D). Successive H2 and CO addition produces the original catalyst and the product ... [Pg.165]

Another difference between the two mechanisms is that the former involves 1,2 and the latter 1,3 shifts. The isomerization of 1-butene by rhodium(I) is an example of a reaction that takes place by the metal hydride mechanism, while an example of the TT-allyl complex mechanism is found in the Fe3(CO)i2 catalyzed isomerization of 3-ethyl-l-pentene. " A palladium acetate or palladium complex catalyst was used to convert alkynones RCOCSCCH2CH2R to 2,4-alkadien-l-ones RCOCH= CHCH = CHCHR. ... [Pg.773]

The catalysts used in hydroformylation are typically organometallic complexes. Cobalt-based catalysts dominated hydroformylation until 1970s thereafter rhodium-based catalysts were commerciahzed. Synthesized aldehydes are typical intermediates for chemical industry [5]. A typical hydroformylation catalyst is modified with a ligand, e.g., tiiphenylphoshine. In recent years, a lot of effort has been put on the ligand chemistry in order to find new ligands for tailored processes [7-9]. In the present study, phosphine-based rhodium catalysts were used for hydroformylation of 1-butene. Despite intensive research on hydroformylation in the last 50 years, both the reaction mechanisms and kinetics are not in the most cases clear. Both associative and dissociative mechanisms have been proposed [5-6]. The discrepancies in mechanistic speculations have also led to a variety of rate equations for hydroformylation processes. [Pg.253]

The mechanism of alkene hydrogenation catalyzed by the neutral rhodium complex RhCl(PPh3)3 (Wilkinson s catalyst) has been characterized in detail by Halpern [36-38]. The hydrogen oxidative addition step involves initial dissociation of PPI13, which enhances the rate of hydrogen activation by a factor... [Pg.89]

Most hydroformylation investigations reported since 1960 have involved trialkyl or triarylphosphine complexes of cobalt and, more recently, of rhodium. Infrared studies of phosphine complex catalysts under reaction conditions as well as simple metal carbonyl systems have provided substantial information about the postulated mechanisms. Spectra of a cobalt 1-octene system at 250 atm pressure and 150°C (21) contained absorptions characteristic for the acyl intermediate C8H17COCo(CO)4 (2103 and 2002 cm-1) and Co2(CO)8. The amount of acyl species present under these steady-state conditions increased with a change in the CO/ H2 ratio in the order 3/1 > 1/1 > 1/3. This suggests that for this system under these conditions, hydrogenolysis of the acyl cobalt species is a rate-determining step. [Pg.6]

In less-coordinating solvents such as dichloromethane or benzene, most of the cationic rhodium catalysts [Rh(nbd)(PR3)n]+A (19) are less effective as alkyne hydrogenation catalysts [21, 27]. However, in such solvents, a few related cationic and neutral rhodium complexes can efficiently hydrogenate 1-alkynes to the corresponding alkene [27-29]. A kinetic study revealed that a different mechanism operates in dichloromethane, since the rate law for the hydrogenation of phenyl acetylene by [Rh(nbd)(PPh3)2]+BF4 is given by r=k[catalyst][alkyne][pH2]2 [29]. [Pg.385]

To obtain information about the steps in which the asymmetric induction actually takes place, 1-butene, cis-butene, and trans-butene were hydroformylated using asymmetric rhodium catalyst. According to the Wilkinson mechanism, all three olefins yield a common intermediate, the sec-butyl-rhodium complex, which, if the asymmetric ligand contains one asymmetric center, must exist in the two diastereomeric forms, IX(S) and IX(R),... [Pg.324]

A large number of rhodium complexes having different anions and phosphorus ligands were studied, but complex (71) was the best catalyst, being under these conditions somewhat surprisingly better than [RhH(CO)(PPh3)3]. The mechanism proposed for the reaction is shown in Scheme... [Pg.262]


See other pages where Rhodium complex catalysts mechanism is mentioned: [Pg.90]    [Pg.1736]    [Pg.155]    [Pg.3]    [Pg.9]    [Pg.628]    [Pg.81]    [Pg.1736]    [Pg.237]    [Pg.105]    [Pg.567]    [Pg.14]    [Pg.89]    [Pg.39]    [Pg.919]    [Pg.797]    [Pg.842]    [Pg.25]    [Pg.405]    [Pg.384]    [Pg.161]    [Pg.5]    [Pg.113]    [Pg.72]    [Pg.84]    [Pg.177]    [Pg.412]    [Pg.103]    [Pg.385]    [Pg.252]    [Pg.488]    [Pg.134]    [Pg.1445]    [Pg.278]    [Pg.434]    [Pg.256]    [Pg.1723]    [Pg.74]    [Pg.918]   
See also in sourсe #XX -- [ Pg.272 , Pg.273 , Pg.274 ]




SEARCH



Catalyst mechanism

Mechanism complexes

Rhodium catalysts catalyst

Rhodium complex catalysts

Rhodium mechanism

© 2024 chempedia.info