Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Rhodium carbene reactions ethyl diazoacetate

Rhodium(III) porphyrins are known to catalyze the insertion of carbethoxy-carbenes from ethyl diazoacetate into the C-H bonds of saturated compounds with yields up to 20-25% corresponding to a large increase of the primary/secondary selectivity [189]. In this case the substrates (Cg to Ci2 n-alkanes) were used as solvents. The rhodium porphyrins, (TPP)Rhl, (TMP)Rhl and (OEP)Rhl efficiently catalyze carbene insertion in 0-H bonds, leading to ethers by using ethyl diazoacetate imder mild conditions [190]. Using (TMP)Rhl as the catalyst, a stereoselective insertion reaction was observed with the order of primary > secondary > tertiary for various alcohols. [Pg.113]

Rh(Por)l (Por = OEP. TPP, TMP) also acts as a catalyst for the insertion of carbene fragments into the O—H bonds of alcohols, again using ethyl diazoacetate as the carbene source. A rhodium porphyrin carbene intermediate was proposed in the reaction, which is more effective for primary than secondary or tertiary alcohols, and with the bulky TMP ligand providing the most selectivity. ... [Pg.309]

Similar to the intramolecular insertion into an unactivated C—H bond, the intermolecular version of this reaction meets with greatly improved yields when rhodium carbenes are involved. For the insertion of an alkoxycarbonylcarbene fragment into C—H bonds of acyclic alkanes and cycloalkanes, rhodium(II) perfluorocarb-oxylates 286), rhodium(II) pivalate or some other carboxylates 287,288 and rhodium-(III) porphyrins 287 > proved to be well suited (Tables 19 and 20). In the era of copper catalysts, this reaction type ranked as a quite uncommon process 14), mainly because the yields were low, even in the absence of other functional groups in the substrate which would be more susceptible to carbenoid attack. For example, CuS04(CuCl)-catalyzed decomposition of ethyl diazoacetate in a large excess of cyclohexane was reported to give 24% (15%) of C/H insertion, but 40% (61 %) of the two carbene dimers 289). [Pg.198]

The EfZ ratio of stilbenes obtained in the Rh2(OAc)4-catalyzed reaction was independent of catalyst concentration in the range given in Table 22 357). This fact differs from the copper-catalyzed decomposition of ethyl diazoacetate, where the ratio diethyl fumarate diethyl maleate was found to depend on the concentration of the catalyst, requiring two competing mechanistic pathways to be taken into account 365), The preference for the Z-stilbene upon C ClO -or rhodium-catalyzed decomposition of aryldiazomethanes may be explained by the mechanism given in Scheme 39. Nucleophilic attack of the diazoalkane at the presumed metal carbene leads to two epimeric diazonium intermediates 385, the sterically less encumbered of which yields the Z-stilbene after C/C rotation 357,358). Thus, steric effects, favoring 385a over 385 b, ultimately cause the preferred formation of the thermodynamically less stable cis-stilbene. [Pg.225]

A somewhat unusual copper catalyst, namely a zeolite in which at least 25% of its rhodium ions had been exchanged by Cu(II), was active in decomposition of ethyl diazoacetate at room temperature 372). In the absence of appropriate reaction partners, diethyl maleate and diethyl fumarate were the major products. The selectivity was a function of the zeolite activation temperature, but the maleate prevailed in all cases. Contrary to the copper salt-catalyzed carbene dimer formation 365), the maleate fumarate ratio was found to be relatively constant at various catalyst concentrations. When Cu(II) was reduced to Cu(I), an improved catalytic activity was observed. [Pg.226]

The Lewis acid-Lewis base interaction outlined in Scheme 43 also explains the formation of alkylrhodium complexes 414 from iodorhodium(III) meso-tetraphenyl-porphyrin 409 and various diazo compounds (Scheme 42)398), It seems reasonable to assume that intermediates 418 or 419 (corresponding to 415 and 417 in Scheme 43) are trapped by an added nucleophile in the reaction with ethyl diazoacetate, and that similar intermediates, by proton loss, give rise to vinylrhodium complexes from ethyl 2-diazopropionate or dimethyl diazosuccinate. As the rhodium porphyrin 409 is also an efficient catalyst for cyclopropanation of olefins with ethyl diazoacetate 87,1°°), stj bene formation from aryl diazomethanes 358 and carbene insertion into aliphatic C—H bonds 287, intermediates 418 or 419 are likely to be part of the mechanistic scheme of these reactions, too. [Pg.238]

An alternative strategy for selective intermolecular G-H insertions has been the use of rhodium carbenoid systems that are more stable than the conventional carbenoids derived from ethyl diazoacetate. Garbenoids derived from aryldiazoacetates and vinyldiazoacetates, so-called donor/acceptor-substituted carbenoids, have been found to display a very different reactivity profile compared to the traditional carbenoids.44 A clear example of this effect is the rhodium pivalate-catalyzed G-H insertion into cyclohexane.77 The reaction with ethyl diazoacetate gave the product only in 10% yield, while the parallel reaction with ethyl phenyldiazoacetate gave the product in 94% yield (Equation (10)). In the first case, carbene dimerization was the dominant reaction, while this was not observed with the donor/acceptor-substituted carbenoids. [Pg.170]

The catalytic activity of rhodium diacetate compounds in the decomposition of diazo compounds was discovered by Teyssie in 1973 [12] for a reaction of ethyl diazoacetate with water, alcohols, and weak acids to give the carbene inserted alcohol, ether, or ester product. This was soon followed by cyclopropanation. Rhodium(II) acetates form stable dimeric complexes containing four bridging carboxylates and a rhodium-rhodium bond (Figure 17.8). [Pg.364]

Wenkert and Khatuya (51) examined the competition between direct insertion of a carbene into furan (via cyclopropanation) and ylide formation with reactive side-chain functionality such as esters, aldehydes, and acetals. They demonstrated the ease of formation of aldehyde derived carbonyl ylides (Scheme 4.30) as opposed to reaction with the electron-rich olefin of the furan. Treatment of 3-furfural (136) with ethyl diazoacetate (EDA) and rhodium acetate led to formation of ylide 137, followed by trapping with a second molecule of furfural to give the acetal 138 as an equal mixture of isomers at the acetal hydrogen position. [Pg.274]

The catalytic activity of low-valent ruthenium species in carbene-transfer reactions is only beginning to emerge. The ruthenium(O) cluster RujCCO), catalyzed formation of ethyl 2-butyloxycyclopropane-l-carboxylate from ethyl diazoacetate and butyl vinyl ether (65 °C, excess of alkene, 0.5 mol% of catalyst yield 65%), but seems not to have been further utilized. The ruthenacarborane clusters 6 and 7 as well as the polymeric diacetatotetracarbonyl-diruthenium (8) have catalytic activity comparable to that of rhodium(II) carboxylates for the cyclopropanation of simple alkenes, cycloalkenes, 1,3-dienes, enol ethers, and styrene with diazoacetic esters. Catalyst 8 also proved exceptionally suitable for the cyclopropanation using a-diazo-a-trialkylsilylacetic esters. ... [Pg.447]

Allyl sulfides and allyl amines. Rhodium-catalyzed decomposition of ethyl diazoacetate in the presence of these allyl compounds generates products 136 and 137, respectively, derived from [2,3] rearrangement of an S- or N-ylide intermediate, besides small amounts of carbene dimers No cyclopropane and no product resulting from the ylide by [1,2] rearrangement were detected. Besides RhjfOAc) and Rhg(CO)i6, the rhodium(I) catalysts [(cod)RhCl]2 and [(CO)2RhCl]2 were found to behave similarly, but yields with the only allyl amine tested, CH =CH—CH NMe, were distinctly lower with the latter two catalysts. Reaction temperatures are higher than usually needed in rhodium-promoted diazoalkane decomposition, which is certainly due to competition between the diazo compound and the allylic hetero-... [Pg.135]

The direct transfer of carbene from diazocompounds to olefins catalyzed by transition metals is the most straightforward synthesis of cyclopropanes [3,4]. Reactions of diazoesters with olefins have been studied using complexes of several transition metals as catalysts. In most cases trans-isomers are preferably obtained, but the selectivity depends on the nature of the complex. In general the highest trans-selectivity is obtained with copper catalysts and it is reduced with palladium and rhodium complexes. Therefore, the rhodium mesotetraphenylporphyrin (RhTPPI) [5] and [(r 5-C5H5)Fe(CO)2(THF)]BF4 [6] are the only catalysts leading to a preference for the cis-isomer in the reaction of ethyl diazoacetate with styrene. [Pg.571]

Mechanistic studies of rhodium porphyrins as cyclopropanation catalysts have resulted in the spectroscopic identification of several potential intermediates in the reaction of ethyl diazoacetate with olefins, including a diazoniumfethoxy-carbonyl)methyl-rhodium complex formed by electrophilic addition of the rhodium center to the a-C atom of ethyl diazoacetate [29]. It is not known if analogous intermediates are also formed in analogous reactions of copper catalysts. However, the initial part of the catalytic cycle leading to the metal carbene intermediate is not of primary concern for the enantioselective reactions described herein. It is the second part, the reaction of the metal-carbene complex with the substrate, that is the enantioselective step. [Pg.492]

Iodorhodium(IIl) porphyrins also efficiently catalyze the reaction of ethyl diazoacetate with simple alkenes. generally providing the cw-isomers as the major product77 79110. The cis( tram ratio increases when bulkier porphyrins, such as tetramesitylporphyrin (TMP), are employed. The mechanism of this rhodium-catalyzed cyclopropanation with diazoacetate is interpreted as proceeding via carbene complexes79 80 111,112. Based on these results, asymmetric cyclopropanation of alkenes with ethyl diazoacetate is achieved if catalyzed by a chiral wall porphyrin81. An earlier described binaphthyl-system of this type82113114, introduced as an iodorhodium(lll) complex, 6, forms an extremely active catalyst and leads to m-cyclopropanes (preferred over the rran.v-products) with moderate to poor enantioselectivities if styrene, 1- and 3-phenylpropene are used as substrates (10-60% ee)81. [Pg.453]

Addition of carbenoids derived from a-diazo carbonyl compounds to prostereogenic olefins can furnish two diastereomeric cyclopropane derivatives (dsjtrans- or euefo/exo-isomers). The metal-catalyzed transfer of alkoxycarbonyl carbenes has been closely investigated it usually furnishes the mwv-substituted cyclopropanes with moderate to good preference. The rhodium(II/-catalyzed reaction of ethyl diazoacetate with various olefins typically demonstrates that the d.r. (trans/cis) increases when the substituent on the olefin becomes sterically more demanding5. [Pg.1018]

Low levels of simple diastereoselection have been reported for the [2,3] rearrangement of the bromonium ylide 22 obtained from ( )-l-bromo-2-butene (21) and the metal-carbene reagent generated from ethyl diazoacetate and rhodium(II) acetate105. Cyclopropane diastereomers are observed as byproducts of the reaction. [Pg.500]

Ducept and Marsden described a general synthesis of 5-ethoxy-2-substituted 4-(triethylsilyl)oxazoles 176 from the rhodium(II)octanoate-catalyzed diazo-transfer reaction of ethyl (triethylsilyl)diazoacetate 175 and nitriles (Scheme 1.48). The reaction conditions tolerate a wide variety of functional groups on the nitrile, including alkyl, aryl, heteroaryl, vinyl, carbonyl, sUyloxy, and dialkylamino. Desilylation of 176 with TBAF afforded the corresponding 2-alkyl(aryl)-5-ethoxy-oxazoles 177, which are normally inaccessible from diazoesters using conventional rhodium-carbene methodology. The authors noted that carbonyl groups in the 2 position of 176 are not compatible with TBAF deprotection. [Pg.36]


See other pages where Rhodium carbene reactions ethyl diazoacetate is mentioned: [Pg.307]    [Pg.137]    [Pg.235]    [Pg.365]    [Pg.136]    [Pg.298]    [Pg.75]    [Pg.446]    [Pg.233]    [Pg.446]    [Pg.259]    [Pg.309]    [Pg.189]    [Pg.176]    [Pg.524]    [Pg.174]   
See also in sourсe #XX -- [ Pg.36 ]




SEARCH



Carbene reactions

Carbenes reactions

Carbenes rhodium -carbene reaction

Diazoacetate

Diazoacetates

Diazoacetates ethyl diazoacetate

Diazoacetic

Ethyl carbene

Rhodium -carbene reaction

Rhodium carbene

Rhodium carbenes

Rhodium reaction

© 2024 chempedia.info