Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reuse ionic liquid

Beckmann rearrangements of several ketoximes were performed in room-temperature ionic liquids based on l,3-dialkylimida2olium or alkylpyridinium salts containing phosphorus compounds (such as PCI5) by Deng and Peng [59] (Scheme 5.1-31, BP = 1-butylpyridinium). Turnover numbers of up to 6.6 were observed, but the authors did not mention whether the ionic liquid could be reused. [Pg.189]

The Robinson annulation of ethyl acetoacetate and trans-chalcone proceeded smoothly to give 6-ethoxycarbonyl-3,5-diphenyl-2-cyclohexenone in 48 % yield. The product was separated from the ionic liquid by solvent extraction with toluene. In both these reactions, the ionic liquid [HMIM][PF6] was recycled and reused with no reduction in the product yield. [Pg.190]

The authors describe a clear enhancement of the catalyst activity by the addition of the ionic liquid even if the reaction medium consisted mainly of CH2CI2. In the presence of the ionic liquid, 86 % conversion of 2,2-dimethylchromene was observed after 2 h. Without the ionic liquid the same conversion was obtained only after 6 h. In both cases the enantiomeric excess was as high as 96 %. Moreover, the ionic catalyst solution could be reused several times after product extraction, although the conversion dropped from 83 % to 53 % after five recycles this was explained, according to the authors, by a slow degradation process of the Mn complex. [Pg.233]

The ionic liquid process has a number of advantages over traditional cationic polymerization processes such as the Cosden process, which employs a liquid-phase aluminium(III) chloride catalyst to polymerize butene feedstocks [30]. The separation and removal of the product from the ionic liquid phase as the reaction proceeds allows the polymer to be obtained simply and in a highly pure state. Indeed, the polymer contains so little of the ionic liquid that an aqueous wash step can be dispensed with. This separation also means that further reaction (e.g., isomerization) of the polymer s unsaturated ot-terminus is minimized. In addition to the ease of isolation of the desired product, the ionic liquid is not destroyed by any aqueous washing procedure and so can be reused in subsequent polymerization reactions, resulting in a reduction of operating costs. The ionic liquid technology does not require massive capital investment and is reported to be easily retrofitted to existing Cosden process plants. [Pg.322]

The cationic nature of the copper(I) catalyst means that it is immobilized in the ionic liquid. This permits the PMMA product to be obtained, with negligible copper contamination, by a simple extraction procedure with toluene (in which the ionic liquid is not miscible) as the solvent. The ionic liquid/catalyst solution was subsequently reused. [Pg.330]

Room temperature ionic liquids are air stable, non-flammable, nonexplosive, immiscible with many Diels-Alder components and adducts, do not evaporate easily and act as support for the catalyst. They are useful solvents, especially for moisture and oxygen-sensitive reactants and products. In addition they are easy to handle, can be used in a large thermal range (typically —40 °C to 200 °C) and can be recovered and reused. This last point is particularly important when ionic liquids are used for catalytic reactions. The reactions are carried out under biphasic conditions and the products can be isolated by decanting the organic layer. [Pg.279]

The use of Lewis acids (ZnU, BF3 Et20) in ionic liquids, tested in the cycloaddition of but-3-en-2-one with isoprene, increases both the rate and selectivity of the reaction. The ionic liquid remains catalytically active after the work-up and can be reused. [Pg.279]

Ionic liquids, which can be defined as salts that do not crystallize at room temperature [46], have been intensively investigated as environmentally friendly solvents because they have no vapor pressure and, in principle, can be reused more efficiently than conventional solvents. Ionic liquids have found wide application in organometallic catalysis as they facilitate the separation between the charged catalysts and the products. [Pg.14]

In all cases a transicis selectivity of around 7/3 is obtained Numbers separated by dashes indicate results in successive reuses Bromine-free ionic liquid Catalyst concentration 25 mM... [Pg.172]

The possibility of recycling the catalyst was also studied. In order to decrease the amount of ethyl maleate and fumarate, the addition rate of ethyl diazoacetate was reduced and the reaction temperature was kept low during the addition. Furthermore, the catalyst concentration was reduced by doubling the volume of ionic liquid. Under these conditions the catalyst was reused seven times, although both the yield and the enantioselectivity decrease from the fourth reuse on (entry 6 in Table 6). [Pg.173]

It is important to note that with the phosphinocobaltocenium ligand cdpp the reaction took place almost exclusively in the ionic liquid phase (ca. 0.5% of the Rh was found in the product layer after reaction). The catalyst phase was separated from the product by decantation. Moreover, the recovered ionic catalyst solution could be reused at least once more with similar reactivity to that in the original run. [Pg.193]

Due to chloride impurities of the ionic liquids in use, all selectivities were lower than the selectivities in pure water. Surprisingly, the selectivity increased from 76 to 90% and from 85 to 90% with reuse of the ionic catalyst solution based on [BMIM][BF4] and [BPy][NTf2], respectively. [Pg.1410]

The advantages of using ionic liquids as solvents for Diels-Alder reactions are exemplified by the scandium triflate catalysed reactions [14] in [bmim][PFg], [bmim][SbF6] and [bmim][OTf] for the reaction shown in Scheme 7.6. Whilst the nature of the anion seems to have little effect, all these solvents give rate enhancements for a range of Diels-Alder reactions compared to when the reactions are carried out in dichloromethane (DCM). Also, the selectivity towards the endo product is higher than in conventional solvents. As well as the enhanced rates and selectivities, the products can also be removed by extraction with diethyl ether and the ionic liquid and catalyst can immediately be reused. Experiments... [Pg.154]


See other pages where Reuse ionic liquid is mentioned: [Pg.125]    [Pg.167]    [Pg.255]    [Pg.125]    [Pg.167]    [Pg.255]    [Pg.100]    [Pg.178]    [Pg.183]    [Pg.183]    [Pg.187]    [Pg.189]    [Pg.220]    [Pg.230]    [Pg.231]    [Pg.237]    [Pg.243]    [Pg.264]    [Pg.327]    [Pg.329]    [Pg.332]    [Pg.119]    [Pg.113]    [Pg.157]    [Pg.159]    [Pg.160]    [Pg.319]    [Pg.77]    [Pg.584]    [Pg.357]    [Pg.287]    [Pg.208]    [Pg.234]    [Pg.235]    [Pg.1392]    [Pg.1398]    [Pg.1403]    [Pg.1409]    [Pg.1416]    [Pg.484]    [Pg.40]   
See also in sourсe #XX -- [ Pg.319 ]




SEARCH



Ionic reuse

Reuse/reusing

Reusing

© 2024 chempedia.info