Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Response time, electrochemical

There are also two classifications for the response observed some detectors give a concentration-dependent signal, which is proportional to the concentration of solute in the mobile phase and independent of the mobile-phase flow rate. If the mobile-phase flow rate is stopped, the signal decreases to zero with a time constant approximately that of the detector response time. Electrochemical detectors and mass spectrometers belong to this category. [Pg.132]

Electrochemical Microsensors. The most successful chemical microsensor in use as of the mid-1990s is the oxygen sensor found in the exhaust system of almost all modem automobiles (see Exhaust control, automotive). It is an electrochemical sensor that uses a soHd electrolyte, often doped Zr02, as an oxygen ion conductor. The sensor exemplifies many of the properties considered desirable for all chemical microsensors. It works in a process-control situation and has very fast (- 100 ms) response time for feedback control. It is relatively inexpensive because it is designed specifically for one task and is mass-produced. It is relatively immune to other chemical species found in exhaust that could act as interferants. It performs in a very hostile environment and is reHable over a long period of time (36). [Pg.392]

Other important alternate electrochemical methods under study for pCO rely on measuring current associated with the direct reduction of CO. The electrochemistry of COj in both aqueous and non-aqueous media has been documented for some time 27-29) interferences from more easily reduced species such as O2 as well as many commonly used inhalation anesthetics have made the direct amperometric approach difficult to implement. One recently described attempt to circumvent some of these interference problems employs a two cathode configuration in which one electrode is used to scrub the sample of O by exhaustive reduction prior to COj amperometry at the second electrode. The response time and sensitivity of the approach may prove to be adequate for blood ps applications, but the issue of interfering anesthetics must be addressed more thorou ly in order to make the technique a truly viable alternative to the presently used indirect potentiometric electrode. [Pg.55]

The high specificity required for the analysis of physiological fluids often necessitates the incorporation of permselective membranes between the sample and the sensor. A typical configuration is presented in Fig. 7, where the membrane system comprises three distinct layers. The outer membrane. A, which encounters the sample solution is indicated by the dashed lines. It most commonly serves to eliminate high molecular weight interferences, such as other enzymes and proteins. The substrate, S, and other small molecules are allowed to enter the enzyme layer, B, which typically consist of a gelatinous material or a porous solid support. The immobilized enzyme catalyzes the conversion of substrate, S, to product, P. The substrate, product or a cofactor may be the species detected electrochemically. In many cases the electrochemical sensor may be prone to interferences and a permselective membrane, C, is required. The response time and sensitivity of the enzyme electrode will depend on the rate of permeation through layers A, B and C the kinetics of enzymatic conversion as well as the charac-... [Pg.62]

CNTs offer an exciting possibility for developing ultrasensitive electrochemical biosensors because of their unique electrical properties and biocompatible nanostructures. Luong et al. have fabricated a glucose biosensor based on the immobilization of GOx on CNTs solubilized in 3-aminopropyltriethoxysilane (APTES). The as-prepared CNT-based biosensor using a carbon fiber has achieved a picoamperometric response current with the response time of less than 5 s and a detection limit of 5-10 pM [109], When Nation is used to solubilize CNTs and combine with platinum nanoparticles, it displays strong interactions with Pt nanoparticles to form a network that connects Pt nanoparticles to the electrode surface. The Pt-CNT nanohybrid-based glucose biosensor... [Pg.502]

There are no electrolyzers developed specifically for operation with wind turbines. However, the rapid response of electrochemical systems to power variations makes them suitable "loads" for wind turbines. Industrial electrolyzers are designed for continuous operation, mainly because their elevated investment cost requires high-capacity factors for reasonable payback times, but they are subject to a considerable number of current interruptions through their lifetime due to occasional power interruptions, accidental trips of safety systems, and planned stops for maintenance. Current interruptions are more frequent in specialty applications, where electrolyzers supply hydrogen "on demand." Therefore, the discontinuous use of the equipment is not new, and most commercial electrolyzers may be used in intermittent operation although a significant performance decrease is expected with time. In fact, it is not power variation, but current interruptions that may cause severe corrosion problems to the electrodes, if the latter are not protected by the application of a polarization current when idle. [Pg.163]

Electrochemical electrodes are subject to interference from a number of substances and sampling conditions Can have a response time of 60-90 s, depending on temperature, sample viscosity and stirring speed Typical lifetime of just 3 months membranes must be changed frequently as they become fouled, damaged or clogged... [Pg.145]

The speed of p- and n-type doping and that of p-n junction formation depend on the ionic conductivity of the solid electrolyte. Because of the generally nonpolar characteristics of luminescent polymers like PPV, and the polar characteristics of solid electrolytes, the two components within the electroactive layer will phase separate. Thus, the speed of the electrochemical doping and the local densities of electrochemically generated p- and n-type carriers will depend on the diffusion of the counterions from the electrolyte into the luminescent semiconducting polymer. As a result, the response time and the characteristic performance of the LEC device will highly depend on the ionic conductivity of the solid electrolyte and the morphology and microstructure of the composite. [Pg.21]

By its chemical nature, the very thin dry layer of glass permits ion exchange without any possibility of electrochemical redox reactions. If the membrane is a sufficiently thin layer, one can achieve millisecond response times to changes in pH, and these properties can be put to full advantage with rapid mixing devices to study chemical reactions with half-lives in the 5-10 msec range. [Pg.547]

Electrochemical immunosensors are the most numerous of immunosensors. Their suitability for use in flow systems is limited by the two factors commented on above in dealing with fibre optic-based sensors, viz. the need for an incubation period and exceedingly long response times. [Pg.161]

It is probably the complexity of these theories that prohibited this particular aspect of electrode kinetics from being attractive for application in the study of homogeneous reaction kinetics per se. Yet it must be clear that the electrochemical techniques, together providing an extremely wide range of time scales, should be preeminently suited for investigations of both slow and (very) fast homogeneous reactions. This is the more true since, nowadays, the problem of the non-availability of a closed-form expression for the response—perturbation or response—time relation has been overcome by numerical analysis procedures conducted with the aid of computers. [Pg.317]

With electrochemical methods, we determine thermodynamic potentials of components in systems which contain a sufficiently large number of atomic particles. Since the systematic investigation of solid electrolytes in the early 1920 s, it is possible to change the mole number of a component in a crystal via the corresponding flux across an appropriate electrolyte (1 mA times 1 s corresponds to ca. 10 s mol). Simultaneously, the chemical potential of the component can be determined with the same set-tip under open circuit conditions. Provided both the response time and the buffer capacity of the galvanic cells are sufficiently small, we can then also register the time dependence of the component chemical potentials in the reacting solids. ... [Pg.398]

Developments in electroanalytical chemistry are driven by technical advances in electronics, computers, and materials. Present scientific capabilities available in a research laboratory will be applicable for field measurements with the advent of smaller, less expensive, more powerful computers. Miniaturization of electrochemical cells, which can improve perfonnance, especially response time, can be implemented most effectively in the context of miniaturization of control circuitry. Concomitant low cost could make disposable systems a practical reality. Sophisticated data analysis and data handling techniques can, with better facilities for computation, be handled in real time. [Pg.54]

Ion-sensitive electrodes are finding increasing use and are superseding atomic absorption techniques in certain cases, partly because of the limited requirements of these electrochemical methods. Electrodes for Na+, K+ and Ca2+ are particularly important, but suffer from the drawback of slow response time. They may be of less value, therefore, in.continuously monitoring changes in concentration levels with time. Thus Ca2+-sensitive electrodes have a detection limit of about 10-8 mol dm-3, but a response time of about 2 s. [Pg.550]

Stability, Reproducibility and Response Time of Electrochemical Sensors... [Pg.259]


See other pages where Response time, electrochemical is mentioned: [Pg.270]    [Pg.270]    [Pg.2139]    [Pg.239]    [Pg.427]    [Pg.402]    [Pg.360]    [Pg.363]    [Pg.184]    [Pg.85]    [Pg.112]    [Pg.26]    [Pg.185]    [Pg.200]    [Pg.242]    [Pg.300]    [Pg.503]    [Pg.534]    [Pg.509]    [Pg.147]    [Pg.456]    [Pg.639]    [Pg.770]    [Pg.610]    [Pg.253]    [Pg.23]    [Pg.336]    [Pg.313]    [Pg.206]    [Pg.124]    [Pg.23]    [Pg.25]    [Pg.86]    [Pg.332]    [Pg.219]    [Pg.259]   


SEARCH



Response time, electrochemical copolymers

Response time, electrochemical electrode

Time response

© 2024 chempedia.info