Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Response function determining

There are also a number of theories taking into account dipolar solvation dynamics. These theories use the solvent s dielectric response function as the dynamical input and also include effects due to the molecular nature of the solvent. The most sophisticated of these theories, by Raineri et al. [136] and by Friedman [137], uses fully atomistic representations for both solute and solvent and recent comparisons have shown it to be capable of quantitatively reproducing both the static and dynamic aspects of solvation of C153 [110]. In these cases the theoretical nature of solvation dynamics is fully understood. However, it must be remembered that much of the success of these theories rests on using the dynamical content of the complicated function, dielectric response function, determined from experiment. Although there... [Pg.314]

Experimental NMR data are typically measured in response to one or more excitation pulses as a function of the time following the last pulse. From a general point of view, spectroscopy can be treated as a particular application of nonlinear system analysis [Bogl, Deul, Marl, Schl]. One-, two-, and multi-dimensional impulse-response functions are defined within this framework. They characterize the linear and nonlinear properties of the sample (and the measurement apparatus), which is simply referred to as the system. The impulse-response functions determine how the excitation signal is transformed into the response signal. A nonlinear system executes a nonlinear transformation of the input function to produce the output function. Here the parameter of the function, for instance the time, is preserved. In comparison to this, the Fourier transformation is a linear transformation of a function, where the parameter itself is changed. For instance, time is converted to frequency. The Fourier transforms of the impulse-response functions are known to the spectroscopist as spectra, to the system analyst as transfer functions, and to the physicist as dynamic susceptibilities. [Pg.125]

The step response function h(x) is also determined by the integral equation (1). The relationship between step response h(x) and the impulse response g(x) is represented by... [Pg.366]

The determined eddy-eurrent parameter is the inductance of the eomplex impedance measured by impedance analyzer at j=100 kHz. Therefore the impulse response function from chapter 4.2.1. is used for calculation. The depth of the cracks is big in comparison to coil size. For presentation the measured and pre-calculated data are related to their maxima (in air). The path X is related to the winding diameter dy of the coil. [Pg.372]

The distribution of residence times of reactants or tracers in a flow vessel, the RTD, is a key datum for determining reactor performance, either the expected conversion or the range in which the conversion must fall. In this section it is shown how tracer tests may be used to estabhsh how nearly a particular vessel approaches some standard ideal behavior, or what its efficiency is. The most useful comparisons are with complete mixing and with plug flow. A glossary of special terms is given in Table 23-3, and major relations of tracer response functions are shown in Table 23-4. [Pg.2081]

The response-factor approach is based on a method in which the response factors represent the transfer functions of the wall due to unit impulse excitations. The real excitation is approximated by a superposition of such impulses (mostly of triangular shape), and the real response is determined by the superposition of the impulse responses (see Figs. 11.33 and 11.34). ... [Pg.1067]

These workers used binary solvent systems over a range of mole fractions to determine, for each solute, the constants a and b of equation (8.2). For methyl and phenacyl esters, TLC was used, while overpressured layer chromatography (OPLC) was used for dansyl amino acids. Nurok and co-workers (11) also evaluated how the quality of a simulated separation varies with changing solvent strength by using the inverse distance function (IDF) or planar response function (PRF), as follows ... [Pg.176]

Procedures for determining the spectral responslvlty or correction factors In equation 2 are based on radiance or Irradlance standards, calibrated source-monochromator combinations, and an accepted standard. The easiest measurement procedure for determining corrected emission spectra Is to use a well-characterized standard and obtain an Instrumental response function, as described by equation 3 (17). In this case, quinine sulfate dlhydrate has been extensively studied and Issued as a National Bureau of Standards (NBS) Standard Reference Material (SRM). [Pg.102]

The approach to standardization used by Haaijman (53) and others (66,67), in which the fluorophor is incorporated within or bound to the surface of a plastic sphere, is more versatile than the use of inorganic ion>doped spheres, since the standard can be tailored exactly to the specifications required by the analyte species. However, this approach increases the uncertainty of the measurement because the photobleaching characteristics of both the standard and the sample must be considered. The ideal approach is to employ both types of standards. The glass microspheres can be used to calibrate instruments and set instrument operating parameters on a day-to-day basis, and the fluorophor-doped polymer materials can be used to determine the concentration-instrument response function. [Pg.115]

Famoxadone, IN-JS940, and IN-KZ007 residues are measured in soil (p-g kg ), sediment (p-gkg ), and water (pgL ). Quantification is based on analyte response in calibration standards and sample extract analyses determined as pg mL Calibration standard runs are analyzed before and after every 1 samples in each analytical set. Analyte quantification is based on (1) linear regression analysis of (y-axis) analyte concentration (lagmL Q and (x-axis) analyte peak area response or (2) the average response factor determined from the appropriate calibration standards. The SLOPE and INTERCEPT functions of Microsoft Excel are used to determine slope and intercept. The AVERAGE and STDEV functions of Microsoft Excel are used to determine average response factors and standard deviations. [Pg.1188]

For manual optimization methods the peak separation function, P, is easy to determine and can be calculated as shown in Figure 4.30 (479). The chromatographic response function for the chromatogram is then simply the sum of the In P values for the n adjacent peak pairs. [Pg.754]

The second step when determining impacts is the hazard assessment [28]. During the hazard assessment, the impact caused by the exposure to a substance is determined [30]. This is often done using in vitro or in silico testing. The results of the hazard assessment are often presented as dose-response functions. [Pg.125]

For the design of the actively compensated RF pulse, experimental and numerical determination of the response function h(t) of the circuit is necessary. We should also keep in mind that modification to the circuit, such as probe timing, insertion or removal of RF filters, and so on, can alter h(t). In practice, it is convenient to measure the response y t) to a step excitation u(t) instead of that to the impulse excitation. By performing Laplace transformation to... [Pg.388]

Time-dependent response theory concerns the response of a system initially in a stationary state, generally taken to be the ground state, to a perturbation turned on slowly, beginning some time in the distant past. The assumption that the perturbation is turned on slowly, i.e. the adiabatic approximation, enables us to consider the perturbation to be of first order. In TD-DFT the density response dp, i.e. the density change which results from the perturbation dveff, enables direct determination of the excitation energies as the poles of the response function dP (the linear response of the KS density matrix in the basis of the unperturbed molecular orbitals) without formally having to calculate a(co). [Pg.121]

As noted above, the primary focus of immunotoxicology has been on suppression many of the early techniques grew out of basic immunology research, in which the function of various components of the immune response was determined by selective manipu-... [Pg.12]

Our experiments are typically carried out at DNA concentrations of 20-50 /ig/ml with 1 ethidium per 300 bp, so that depolarization by excitation transfer is negligible.(18) The sample is excited with 575-nm light, and the fluorescence is detected at 630, 640, or 645 nm. Less than one fluorescent photon is detected for every 100 laser shots. The instrument response function e(t) is determined using 575-nm incident light scattered from a suspension of polystyrene latex spheres. [Pg.170]

Ky is the Flory-Huggins interaction parameter between the i and j monomers. In Eq. 6.6, the matrices have a dimension (m) (m). We note that the s-depen-dence of the excluded volume matrix is solely determined by the contribution of the bare susceptibility yoo(Q> ) he invisible matrix component 0 . Finally, combining Eq. 6.6 with Eq. 6.1 the response function in the interacting system is given by ... [Pg.164]

Static charge-density susceptibilities have been computed ab initio by Li et al (38). The frequency-dependent susceptibility x(r, r cd) can be calculated within density functional theory, using methods developed by Ando (39 Zang-will and Soven (40 Gross and Kohn (4I and van Gisbergen, Snijders, and Baerends (42). In ab initio work, x(r, r co) can be determined by use of time-dependent perturbation techniques, pseudo-state methods (43-49), quantum Monte Carlo calculations (50-52), or by explicit construction of the linear response function in coupled cluster theory (53). Then the imaginary-frequency susceptibility can be obtained by analytic continuation from the susceptibility at real frequencies, or by a direct replacement co ico, where possible (for example, in pseudo-state expressions). [Pg.172]

In its underlying physics, the use of susceptibilities to obtain E is related to the use of a generalized dielectric response function to determine the energy of a... [Pg.172]

The response function and the associated analytical merits for absorption spectroscopic techniques (e.g., NIR, UV-vis and infrared) are determined by the optical path length, detector gain, signal averaging and spectral resolution. The LIF detection performance is also governed by these parameters but is also influenced by critical parameters associated with the excitation source (e.g., optical power, pulse rate, etc.) as previously discussed. ... [Pg.345]


See other pages where Response function determining is mentioned: [Pg.24]    [Pg.197]    [Pg.442]    [Pg.127]    [Pg.24]    [Pg.197]    [Pg.442]    [Pg.127]    [Pg.209]    [Pg.212]    [Pg.369]    [Pg.261]    [Pg.200]    [Pg.111]    [Pg.451]    [Pg.938]    [Pg.163]    [Pg.102]    [Pg.119]    [Pg.123]    [Pg.241]    [Pg.95]    [Pg.124]    [Pg.200]    [Pg.32]    [Pg.336]    [Pg.163]    [Pg.174]    [Pg.63]    [Pg.570]    [Pg.351]    [Pg.172]    [Pg.159]    [Pg.377]    [Pg.82]   
See also in sourсe #XX -- [ Pg.58 , Pg.59 , Pg.60 , Pg.179 ]




SEARCH



Determinant function

Functional determinant

Functionality determination

Response determination

Response functions

© 2024 chempedia.info