Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pyridines resonance

SERS. A phenomenon that certainly involves the adsorbent-adsorbate interaction is that of surface-enhanced resonance Raman spectroscopy, or SERS. The basic observation is that for pyridine adsorbed on surface-roughened silver, there is an amazing enhancement of the resonance Raman intensity (see Refs. 124—128). More recent work has involved other adsorbates and colloidal... [Pg.591]

Likewise, quantum mechanical calculation succeeds in giving a theoretical explanation of some facts that the resonance theory could not explain, for example, why bis(pyridine-2)monomethine cyanine and bis(pyridine-4)monomethine cyanine possess the same lowest energy transition contrary to the 2,2 - and 2,4 -quinoline monomethine dyes, together with a molecular coefficient extinction lower than that of the 4,4 -quinoline dye (11). Calculation shows also that there is no theoretical reason for observing a relationship between and pK in a large series of dyes with different nuclei as it has been postulated, even if limited observations and calculations in short homogeneous series could lead to this conclusion (105). [Pg.73]

Experimental confirmation of the metal-nitrogen coordination of thiazole complexes was recently given by Pannell et al. (472), who studied the Cr(0), Mo(0), and W(0) pentacarbonyl complexes of thiazole (Th)M(CO)5. The infrared spectra are quite similar to those of the pyridine analogs the H-NMR resonance associated with 2- and 4-protons are sharper and possess fine structure, in contrast to the broad, featureless resonances of free thiazole ligands. This is expected since removal of electron density from nitrogen upon coordination reduces the N quad-rupole coupling constant that is responsible for the line broadening of the a protons. [Pg.129]

Two modified sigma constants have been formulated for situations in which the substituent enters into resonance with the reaction center in an electron-demanding transition state (cr+) or for an electron-rich transition state (cr ). cr constants give better correlations in reactions involving phenols, anilines, and pyridines and in nucleophilic substitutions. Values of some modified sigma constants are given in Table 9.4. [Pg.1004]

Pyrrole has a planar, pentagonal (C2 ) stmcture and is aromatic in that it has a sextet of electrons. It is isoelectronic with the cyclopentadienyl anion. The TT-electrons are delocalized throughout the ring system, thus pyrrole is best characterized as a resonance hybrid, with contributing stmctures (1 5). These stmctures explain its lack of basicity (which is less than that of pyridine), its unexpectedly high acidity, and its pronounced aromatic character. The resonance energy which has been estimated at about 100 kj/mol (23.9 kcal/mol) is intermediate between that of furan and thiophene, or about two-thirds that of benzene (5). [Pg.354]

Benzoates. The selective debenzoylation of sucrose octabenzoate [2425-84-5] using isopropylamine in the absence of solvents caused deacylation in the furanose ring to give 2,3,4,6,1/3/6 -hepta- and 2,3,4,6,1/6 -hexa-O-benzoyl-sucroses in 24.1 and 25.4% after 21 and 80 hours, respectively (54). The unambiguous assignment of partially benzoylated sucrose derivatives was accompHshed by specific isotopic labeling techniques (54). Identification of any benzoylated sucrose derivative can thus be achieved by comparison of its C-nmr carbonyl carbon resonances with those of the assigned octabenzoate derivative after benzoylation with 10 atom % benzoyl—carbonyl chloride in pyridine. [Pg.33]

Chemical shifts of pyridine and the diazines have been measured as a function of pH in aqueous solution and generally protonation at nitrogen results in deshielding of the carbon resonances by up to 10 p.p.m. (73T1145). The pH dependence follows classic titration curves whose inflexions yield pK values in good agreement with those obtained by other methods. [Pg.160]

Af-Oxidation of pyrazines appears to result in increased shielding of the a and a carbon resonances by 6-11 p.p.m., whereas the /3 and /3 carbon atoms are deshielded by 3-4 p.p.m., a trend similar to that observed with substituted pyridines. These results have been qualitatively explained in terms of resonance polar effects (80OMR(l3)l72). [Pg.160]

Electrophilic substitution reactions of unsubstituted quinoxaline or phenazine are unusual however, in view of the increased resonance possibilities in the transition states leading to the products one would predict that electrophilic substitution should be more facile than with pyrazine itself (c/. the relationship between pyridine and quinoline). In the case of quinoxaline, electron localization calculations (57JCS2521) indicate the highest electron density at positions 5 and 8 and substitution would be expected to occur at these positions. Nitration is only effected under forcing conditions, e.g. with concentrated nitric acid and oleum at 90 °C for 24 hours a 1.5% yield of 5-nitroquinoxaline (19) is obtained. The major product is 5,6-dinitroquinoxaline (20), formed in 24% yield. [Pg.163]

Double resonance modulated spectroscopy pyridines and benzo derivatives, 2, 104 Dowicil S-13 as fungicide, 2, 515 Doxepin... [Pg.620]

Pyridine, l-lithio-2-phenyl-l,2-dihydro-, 2, 266 Pyridine, 2-methoxy-IR spectroscopy, 2, 129 photoelectron spectroscopy, 2, 140 pulsed ion gas-phase cyclotron resonance spectroscopy, 2, 157 Pyridine, 3-methoxy-nitration, 2, 191 Pyridine, 4-methoxy-pKa,, 2. 150... [Pg.788]

In contrast to H shifts, C shifts cannot in general be used to distinguish between aromatic and heteroaromatic compounds on the one hand and alkenes on the other (Table 2.2). Cyclopropane carbon atoms stand out, however, by showing particularly small shifts in both the C and the H NMR spectra. By analogy with their proton resonances, the C chemical shifts of k electron-deficient heteroaromatics (pyridine type) are larger than those of k electron-rieh heteroaromatic rings (pyrrole type). [Pg.13]

Structures that incorporate the —N = CH— unit, such as pyridine, are rr-deflcient and are deactivated to electrophilic attack. Again, a resonance interpretation is evident. The nitrogen, being more electronegative than carbon, is a net acceptor of n electron density. [Pg.569]

In pyridine, as in 2-propanol, the selectivity of reduction favors the A" -3-ketone over the 17- and 20-ketones.Kupfer suggests that resonance interactions between the double bond and the 3-ketone are smaller in pyridine and in 2-propanol than in methanol. However, by slow addition (1 hour) of one equivalent of NaBH4 in pyridine to a solution of androst-4-ene-3,17-dione i n methanol, testosterone has been obtained in good yield (72 %). Similarly,... [Pg.83]

Acridine is a heterocyclic aromatic compound obtained from coal tar that is used in the synthesis of dyes. The molecular formula of acridine is C13H9N, and its ring system is analogous to that of anthracene except that one CH group has been replaced by N. The two most stable resonance structures of acridine are equivalent to each other, and both contain a pyridine-like structural unit. Write a structural formula for acridine. [Pg.472]

The CNDO method has been modified by substitution of semiempirical Coulomb integrals similar to those used in the Pariser-Parr-Pople method, and by the introduction of a new empirical parameter to differentiate resonance integrals between a orbitals and tt orbitals. The CNDO method with this change in parameterization is extended to the calculation of electronic spectra and applied to the isoelectronic compounds benzene, pyridine, pyri-dazine, pyrimidine and pyrazine. The results obtained were refined by a limited Cl calculation, and compared with the best available experimental data. It was found that the agreement was quite satisfactory for both the n TT and n tt singlet transitions. The relative energies of the tt and the lone pair orbitals in pyridine and the diazines are compared and an explanation proposed for the observed orders. Also, the nature of the lone pairs in these compounds is discussed. [Pg.150]

The 9ai7-quinolizine structure (82) for the labile adduct from 3,5-dimethylpyridine was clearly established by the nuclear magnetic resonance studies of Richards and Higham, and subsequent work showed the labile adduct from 3-methylpyridine was analogous. As the labile adducts from all the pyridines and benzopyridines so far examined have very similar infrared absorption spectra in the 5-7 yn. (carbonyl and aromatic) region and within quite close limits very similar ultraviolet absorption spectra, it can be concluded that all are derivatives of 9aH-quinolizine,... [Pg.145]

It is interesting to speculate why the basicities of the substituted pyridines are well correlated by normal a-values, rather than by a+-values. Writing the resonance structures for the conjugate acid (5<->6)... [Pg.226]

Few other reactions of series of substituted pyridines have been investigated extensively. Dondoni, Modena, and Todesco have measured the rate of N-oxidation of a limited series of pyridines and found a good correlation with normal u-values with a p-value of — 2.23. The A-alkylation of pyridines with alkyl iodides in nitrobenzene has been studied by Brown and Cahn and by Clarke and Rothwell. Unfortunately, the only data available are for the parent compound and for alkyl derivatives, and, since the a-values for the various alkyl groups in a given position are substantially constant, this leaves a correlation of only three independent points. However, the rates of A-alkylation of the j8- and y-alkyl derivatives are so nearly equal that it appears as if no correlation existed. Clarke and Rothwell have also studied the alkylation with allyl bromide in nitromethane at various temperatures, and in this case a more extensive series is available. The authors state that no overall Hammett correlation is obtained however, the j8-substituted derivatives fall on one straight line and the y-derivatives on another one with a different slope. The data are shown in Fig. 2. The line for the j8-compounds, p = — 2.53 0.31, r = 0.95, is seen not to be very good the line for the y-derivatives, p = — 1.42 0.06, r = 0.99, is much more satisfactory. It does not seem likely that the discrepancy is due to the intervention of resonance effects, since in this case one would expect the correlation for the y-derivatives to be poorer than that for the j8-analogs. More extensive studies with a wider variety of substituents would seem very desirable. [Pg.227]


See other pages where Pyridines resonance is mentioned: [Pg.621]    [Pg.657]    [Pg.621]    [Pg.621]    [Pg.303]    [Pg.621]    [Pg.621]    [Pg.657]    [Pg.621]    [Pg.621]    [Pg.303]    [Pg.621]    [Pg.146]    [Pg.69]    [Pg.67]    [Pg.299]    [Pg.322]    [Pg.388]    [Pg.393]    [Pg.10]    [Pg.4]    [Pg.35]    [Pg.50]    [Pg.32]    [Pg.711]    [Pg.757]    [Pg.796]    [Pg.236]    [Pg.542]    [Pg.64]    [Pg.302]    [Pg.148]    [Pg.148]    [Pg.157]    [Pg.427]    [Pg.206]    [Pg.226]   
See also in sourсe #XX -- [ Pg.118 ]

See also in sourсe #XX -- [ Pg.16 , Pg.135 ]

See also in sourсe #XX -- [ Pg.15 ]




SEARCH



© 2024 chempedia.info