Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Resonance, absorption scattering

In this section we will discuss more conventional spectroscopies absorption, emission and resonance Raman scattering. These spectroscopies are generally measured under single frequency conditions, and therefore our... [Pg.244]

RRS has also introduced the concept of a Raman excitation profile (REPy for thefth mode) [46, 4lZ, 48, 49, 50 and M]. An REP. is obtained by measuring the resonance Raman scattering strength of thefth mode as a fiinction of the excitation frequency [, 53]. Flow does the scattering intensity for a given (thefth) Raman active vibration vary with excitation frequency within an electronic absorption band In turn, this has led to transfomi theories that try to predict... [Pg.1200]

Band gaps in semiconductors can be investigated by other optical methods, such as photoluminescence, cathodoluminescence, photoluminescence excitation spectroscopy, absorption, spectral ellipsometry, photocurrent spectroscopy, and resonant Raman spectroscopy. Photoluminescence and cathodoluminescence involve an emission process and hence can be used to evaluate only features near the fundamental band gap. The other methods are related to the absorption process or its derivative (resonant Raman scattering). Most of these methods require cryogenic temperatures. [Pg.387]

We are interested in the transmission of y-quanta through the absorber as a function of the Doppler velocity. The radiation is attenuated by resonant absorption, in as much as emission and absorption lines are overlapping, but also by mass absorption due to photo effect and Compton scattering. Therefore, the number Tt E2)AE of recoilless y-quanta with energies EXo E + AE traversing the absorber is given by... [Pg.20]

Scattered radiation. In a transmission experiment, the Mossbauer sample emits a substantial amount of scattered radiation, originating from XRF and Compton scattering, but also y-radiation emitted by the Mossbauer nuclei upon de-excitation of the excited state after resonant absorption. Since scattering occurs in 4ti solid angle, the y-detector should not be positioned too close to the absorber so as not to collect too much of this unwanted scattered radiation. The corresponding pulses may not only uimecessarily overload the detector and increase the counting dead time, but they may also affect the y-discrimination in the SCA and increase the nonresonant background noise. [Pg.45]

In the case of resonance absorption of synchrotron radiation by an Fe nucleus in a polycrystalline sample, the frequency dependence of the electric field of the forward scattered radiation, R(oj), takes a Lorentzian lineshape. In order to gain information about the time dependence of the transmitted radiation, the expression for R(oj) has to be Fourier-transformed into R(t) [6]. [Pg.480]

Resonance Raman spectroscopy has been applied to studies of polyenes for the following reasons. The Raman spectrum of a sample can be obtained even at a dilute concentration by the enhancement of scattering intensity, when the excitation laser wavelength is within an electronic absorption band of the sample. Raman spectra can give information about the location of dipole forbidden transitions, vibronic activity and structures of electronically excited states. A brief summary of vibronic theory of resonance Raman scattering is described here. [Pg.152]

In LB films not only the interaction of chromophores but also their orientation can be controlled at the molecular level. Molecular orientation of chromophores has been determined by several methods including polarized UV/vis or IR absorption, second harmonic generation (SHG), Electron Spin Resonance (ESR), or resonance Raman scattering. We have measured the incident angle and polarization angle dependencies of polarized UV/vis absorption to study the molecular orientation of alloxazine, porphyrin, and carbazolyl chromophores, or 4,4 -bipyridinium radical cations in LB films[3-12]. Usually in-plane components of transition dipoles of chromophores are... [Pg.261]

Surface-enhanced resonance Raman scattering (SERRS), 21 327-328 advantage of, 21 329 Surface Evolver software, 12 11 Surface excess, 24 135, 136 Surface extended X-ray absorption fine structure (SEXAFS), 19 179 24 72 Surface filtration, 11 322-323 Surface finish(es). See also Electroplating in electrochemical machining, 9 591 fatigue performance and, 13 486-487 Surface finishing agents, 12 33 Surface force apparatus, 1 517 Surface force-pore flow (SFPF) model,... [Pg.911]

The metaiioporphyrins form a diverse class of molecules exhibiting complex and varied photochemistries. Until recently time-resolved absorption and fluorescence spectroscopies were the only methods used to study metailoporphyrln excited state relaxation in a submicrosecond regime. In this paper we present the first picosecond time-resolved resonance Raman spectra of excited state metaiioporphyrins outside of a protein matrix. The inherent molecular specificity of resonance Raman scattering provides for a direct probe of bond strengths, geometries, and ligation states of photoexcited metaiioporphyrins. [Pg.266]

Probing Metalloproteins Electronic absorption spectroscopy of copper proteins, 226, 1 electronic absorption spectroscopy of nonheme iron proteins, 226, 33 cobalt as probe and label of proteins, 226, 52 biochemical and spectroscopic probes of mercury(ii) coordination environments in proteins, 226, 71 low-temperature optical spectroscopy metalloprotein structure and dynamics, 226, 97 nanosecond transient absorption spectroscopy, 226, 119 nanosecond time-resolved absorption and polarization dichroism spectroscopies, 226, 147 real-time spectroscopic techniques for probing conformational dynamics of heme proteins, 226, 177 variable-temperature magnetic circular dichroism, 226, 199 linear dichroism, 226, 232 infrared spectroscopy, 226, 259 Fourier transform infrared spectroscopy, 226, 289 infrared circular dichroism, 226, 306 Raman and resonance Raman spectroscopy, 226, 319 protein structure from ultraviolet resonance Raman spectroscopy, 226, 374 single-crystal micro-Raman spectroscopy, 226, 397 nanosecond time-resolved resonance Raman spectroscopy, 226, 409 techniques for obtaining resonance Raman spectra of metalloproteins, 226, 431 Raman optical activity, 226, 470 surface-enhanced resonance Raman scattering, 226, 482 luminescence... [Pg.457]

Most often the transmission mode is found to be the most convenient in Mossbauer spectroscopy, i.e., the y radiation passes from the source through the absorber, and the attenuation of the primary beam is measured at the various Doppler velocities. However, there are a number of cases where a "scattering geometry may be advantageous (SO). The basis for this geometry lies in those processes that take place after resonant absorption of y radiation by the Mossbauer isotope. Specifically, after excitation the Mossbauer isotope may reemit the y ray, or it may decay by emission of internal conversion electrons and X rays [with the probability of internal conversion equal to a/(l + a)]. [Pg.162]

Up to this point, we have been considering the absorption properties of Au nanoparticles and the significance of Cabs in colorimetric or photothermal applications. However, colloidal Au particles are also famous for resonant light scattering, which depends on CJca.109,110 The earlier description of C, is dominated by Cabs and intended only for smaller nanospheres (r < 20 nm). Cext is more correctly described as the sum of Cabs + Csca ... [Pg.330]

In the process of scattering and absorption, the electric component of the incident wave excites the vibrations of the oscillator. Under the effect of this component the electron performs forced vibrations. If the eigenfrequency ojq of the oscillator coincides with that of the light wave u>i, resonance absorption is observed. If these frequencies do not coincide, we have non-resonant scattering of light. [Pg.13]


See other pages where Resonance, absorption scattering is mentioned: [Pg.321]    [Pg.98]    [Pg.144]    [Pg.163]    [Pg.264]    [Pg.14]    [Pg.14]    [Pg.46]    [Pg.536]    [Pg.87]    [Pg.122]    [Pg.123]    [Pg.148]    [Pg.491]    [Pg.194]    [Pg.211]    [Pg.239]    [Pg.280]    [Pg.36]    [Pg.360]    [Pg.247]    [Pg.680]    [Pg.227]    [Pg.195]    [Pg.53]    [Pg.520]    [Pg.302]    [Pg.41]    [Pg.96]    [Pg.84]    [Pg.85]    [Pg.40]    [Pg.135]    [Pg.50]   
See also in sourсe #XX -- [ Pg.107 , Pg.317 , Pg.634 ]




SEARCH



Absorption resonance

Resonance scattering

Resonant absorption, Rayleigh scattering

Resonant scattering

Surface plasmon resonance scattering and absorption

© 2024 chempedia.info