Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Resolution amides

Lisinopril (S) -1-A - (l-Carboxy-3-phenylpropyl) -L-lysyl] L-proline dihydrate Pd-catalyzed carbonylation, hydroxylation of a double bond, chemical resolution, amidation, A-protection (using trifluoroacetic anhydride), carbonyl activation (using phosgene)... [Pg.30]

The C02H group also helps resolution. Amide formation with the amine (S)-(—)-2 gave the amide 30 - a likely crystalline derivative. It is of course impossible to predict with certainty which compounds will crystallise, and particularly which diastereoisomer will crystallise. It turns out that (R,S)-30 crystallises out, leaving (S,S)-30 in solution. Recrystallisation purifies this diastereoisomer until it is free from the other. [Pg.440]

This procedure is restricted mainly to aminodicarboxyhc acids or diaminocarboxyhc acids. In the case of neutral amino acids, the amino group or carboxyl group must be protected, eg, by A/-acylation, esterification, or amidation. This protection of the racemic amino acid and deprotection of the separated enantiomers add stages to the overall process. Furthermore, this procedure requires a stoichiometric quantity of the resolving agent, which is then difficult to recover efficiendy. Practical examples of resolution by this method have been pubUshed (50,51). [Pg.278]

Industrial Synthetic Improvements. One significant modification of the Stembach process is the result of work by Sumitomo chemists in 1975, in which the optical resolution—reduction sequence is replaced with a more efficient asymmetric conversion of the meso-cyc. 02Lcid (13) to the optically pure i7-lactone (17) (Fig. 3) (25). The cycloacid is reacted with the optically active dihydroxyamine [2964-48-9] (23) to quantitatively yield the chiral imide [85317-83-5] (24). Diastereoselective reduction of the pro-R-carbonyl using sodium borohydride affords the optically pure hydroxyamide [85317-84-6] (25) after recrystaUization. Acid hydrolysis of the amide then yields the desired i7-lactone (17). A similar approach uses chiral alcohols to form diastereomic half-esters stereoselectivity. These are reduced and direedy converted to i7-lactone (26). In both approaches, the desired diastereomeric half-amide or half-ester is formed in excess, thus avoiding the cosdy resolution step required in the Stembach synthesis. [Pg.30]

Appllca.tlons. MCA is used for the resolution of many classes of chiral dmgs. Polar compounds such as amines, amides, imides, esters, and ketones can be resolved (34). A phenyl or a cycloalkyl group near the chiral center seems to improve chiral selectivity. Nonpolar racemates have also been resolved, but charged or dissociating compounds are not retained on MCA. Mobile phases used with MCA columns include ethanol and methanol. [Pg.100]

Replacement of the ketone by an amide leads to Increased potency. Hydrolysis of nitrile, 133 (obtained by alkylation of diphenylacetonitrile with the morpholine analog of the chloro-amine used in the original preparation of methadone), affords acid, 134. Conversion to the acid chloride followed by reaction with pyrrolidine affords racemoramide (135) Separation of the (+) isomer by optical resolution gives dextromoramide, an analgesic an order of magnitude more potent than methadone. [Pg.82]

Saturation of the aromatic ring of pentopril analogues is also consistent with ACE inhibition as demonstrated by the oral activity of indolapril (23). The necessary heterocyclic component (21) can in principle be prepared by catalytic perhydrogenation (Rh/C, HOAc) of the corresponding indole. A single isomer predominates. The product is condensed by amide bond formation with the appropriate alanylhomophenylalanyl dipeptide ester 20 to give 22. Selective saponification to 23 could be accomplished by treatment with HCl gas. Use of the appropriate stereoisomers (prepared by resolution processes) produces chiral indolapril [8]. [Pg.128]

A very efficient and universal method has been developed for the production of optically pue L- and D-amino adds. The prindple is based on the enantioselective hydrolysis of D,L-amino add amides. The stable D,L-amino add amides are effidently prepared under mild reaction conditions starting from simple raw materials (Figure A8.2). Thus reaction of an aldehyde with hydrogen cyanide in ammonia (Strecker reaction) gives rise to the formation of the amino nitrile. The aminonitrile is converted in a high yield to the D,L-amino add amide under alkaline conditions in the presence of a catalytic amount of acetone. The resolution step is accomplished with permeabilised whole cells of Pseudomonas putida ATCC 12633. A nearly 100% stereoselectivity in hydrolysing only the L-amino add amide is combined with a very broad substrate spedfidty. [Pg.277]

The main application of the enzymatic hydrolysis of the amide bond is the en-antioselective synthesis of amino acids [4,97]. Acylases (EC 3.5.1.n) catalyze the hydrolysis of the N-acyl groups of a broad range of amino acid derivatives. They accept several acyl groups (acetyl, chloroacetyl, formyl, and carbamoyl) but they require a free a-carboxyl group. In general, acylases are selective for i-amino acids, but d-selective acylase have been reported. The kinetic resolution of amino acids by acylase-catalyzed hydrolysis is a well-established process [4]. The in situ racemization of the substrate in the presence of a racemase converts the process into a DKR. Alternatively, the remaining enantiomer of the N-acyl amino acid can be isolated and racemized via the formation of an oxazolone, as shown in Figure 6.34. [Pg.146]

Figure 6.38 Dynamic kinetic resolution of amino acid amides. Figure 6.38 Dynamic kinetic resolution of amino acid amides.
Irimescu and Kato have recently described an interesting example of enzymatic KR in ionic liquids instead of organic solvents (Scheme 7.4) [12]. The resolution with CALB is based on the fact that the reaction equilibrium was shifted toward the amide synthesis by the removal of water under reduced pressure. Nonsolvent systems have been also employed in this enantioselective amidation processes, reacting racemic amines with aliphatic acids. The best reaction conditions for the conversion of acids to amides was observed using CALB at 90 °C under vacuum. Meanwhile, no... [Pg.174]

The resolution of racemic ethyl 2-chloropropionate with aliphatic and aromatic amines using Candida cylindracea lipase (CCL) [28] was one of the first examples that showed the possibilities of this kind of processes for the resolution of racemic esters or the preparation of chiral amides in benign conditions. Normally, in these enzymatic aminolysis reactions the enzyme is selective toward the (S)-isomer of the ester. Recently, the resolution ofthis ester has been carried out through a dynamic kinetic resolution (DKR) via aminolysis catalyzed by encapsulated CCL in the presence of triphenylphosphonium chloride immobilized on Merrifield resin (Scheme 7.13). This process has allowed the preparation of (S)-amides with high isolated yields and good enantiomeric excesses [29]. [Pg.179]

The strategy described here explains the different possibilities of enzymatic ammonolysis and aminolysis reaction for resolution of esters or preparation of enantiomerically pure amides, which are important synthons in organic chemistry. This methodology has been also applied for the synthesis of pyrrolidinol derivatives that can be prepared via enzymatic ammonolysis of a polyfunctional ester, such as ethyl ( )-4-chloro-3-hydroxybutanoate [30]. In addition, it is possible in the resolution of chiral axe instead of a stereogenic carbon atom. An interesting enzymatic aminolysis of this class of reaction has been recently reported by Aoyagi et al. [31[. The side chain of binaphthyl moiety plays an important role in the enantiodis-crimination of the process (Scheme 7.14). [Pg.179]

Preparation of optically active P-aminoesters, P-aminonitriles, and P-aminocarbox-amides are of special relevance for the synthesis of enantiomerically pure P-aminoacids compounds of special relevance in several areas of medicinal chemistry. The resolution of P-aminoesters can be carried out by acylation of the amino groups or by other biocatalytic reactions of the ester groups, such as hydrolysis, transesterification, or aminolysis. The resolution of ethyl ( )-3-aminobutyrate... [Pg.186]

One of the most important characteristics of IL is its wide temperature range for the liquid phase with no vapor pressure, so next we tested the lipase-catalyzed reaction under reduced pressure. It is known that usual methyl esters are not suitable for lipase-catalyzed transesterification as acyl donors because reverse reaction with produced methanol takes place. However, we can avoid such difficulty when the reaction is carried out under reduced pressure even if methyl esters are used as the acyl donor, because the produced methanol is removed immediately from the reaction mixture and thus the reaction equilibrium goes through to produce the desired product. To realize this idea, proper choice of the acyl donor ester was very important. The desired reaction was accomplished using methyl phenylth-ioacetate as acyl donor. Various methyl esters can also be used as acyl donor for these reactions methyl nonanoate was also recommended and efficient optical resolution was accomplished. Using our system, we demonstrated the completely recyclable use of lipase. The transesterification took place smoothly under reduced pressure at 10 Torr at 40°C when 0.5 equivalent of methyl phenylthioacetate was used as acyl donor, and we were able to obtain this compound in optically pure form. Five repetitions of this process showed no drop in the reaction rate (Fig. 4). Recently Kato reported nice additional examples of lipase-catalyzed reaction based on the same idea that CAL-B-catalyzed esterification or amidation of carboxylic acid was accomplished under reduced pressure conditions. ... [Pg.7]

Our approach for chiral resolution is quite systematic. Instead of randomly screening different chiral acids with racemic 7, optically pure N-pMB 19 was prepared from 2, provided to us from Medicinal Chemistry. With 19, several salts with both enantiomers of chiral acids were prepared for evaluation of their crystallinity and solubility in various solvent systems. This is a more systematic way to discover an efficient classical resolution. First, a (+)-camphorsulfonic acid salt of 19 crystallized from EtOAc. One month later, a diastereomeric (-)-camphorsulfonic acid salt of 19 also crystallized. After several investigations on the two diastereomeric crystalline salts, it was determined that racemic 7 could be resolved nicely with (+)-camphorsulfonic acid from n-BuOAc kinetically. In practice, by heating racemic 7 with 1.3equiv (+)-camphorsulfonic acid in n-BuOAc under reflux for 30 min then slowly cooling to room temperature, a cmde diastereomeric mixture of the salt (59% ee) was obtained as a first crop. The first crop was recrystallized from n-BuOAc providing 95% ee salt 20 in 43% isolated yield. (The optical purity was further improved to -100% ee by additional recrystallization from n-BuOAc and the overall crystallization yield was 41%). This chiral resolution method was more efficient and economical than the original bis-camphanyl amide method. [Pg.7]

Amide Bond Formation as the Final Step-Classical Resolution Approach... [Pg.244]

Use of the relatively small cyclopropane ring drastically reduces the potential for deleterious steric bulk effects and adds only a relatively small lipophilic increment to the partition coefficient of the drug. One of the clever elements of the rolicyprine synthesis itself is the reaction of d,l tranylcypromine (67) with L-5-pyrrolidone-2-carboxylic acid (derived from glutamic acid) to form a highly crystalline diastereomeric salt, thereby effecting resolution. Addition of dicyclohexylcarbodiimide activates the carboxyl group to nucleophilic attack by the primary amine thus forming the amide rolicyprine (68). [Pg.51]

Larger frequency shifts lead to more sensitive structural discriminations. In the IR, the (i-shcct amide I is distinctively lower in frequency than other structural types, particularly for aggregates, a form often seen in unfolding experiments. However, owing to the high signal-to-noise ratio (S/N) of Fourier transform IR (FTIR), one can detect components having smaller frequency separations. This effective resolution... [Pg.136]

Fig. 1. Comparison of amide V VCD for an identical sample of poly-L-lysine in D20 as measured on the UIC dispersive instrument (top) and on the ChirallRFT-VCD instrument (at Vanderbilt University, kindly made available by Prof. Prasad Polavarapu). Sample spectra were run at the same resolution for the same total time ( 1 h) in each case. The FTIR absorbance spectrum of the sample is shown below. VCD spectra are offset for sake of comparison. Each ideal baseline is indicated by a thin line, the scale providing a measure of amplitude. Noise can be estimated as the fluctuation in the baseline before and after the amide V, which indicates the S/N advantage of the single band dispersive measurement. Fig. 1. Comparison of amide V VCD for an identical sample of poly-L-lysine in D20 as measured on the UIC dispersive instrument (top) and on the ChirallRFT-VCD instrument (at Vanderbilt University, kindly made available by Prof. Prasad Polavarapu). Sample spectra were run at the same resolution for the same total time ( 1 h) in each case. The FTIR absorbance spectrum of the sample is shown below. VCD spectra are offset for sake of comparison. Each ideal baseline is indicated by a thin line, the scale providing a measure of amplitude. Noise can be estimated as the fluctuation in the baseline before and after the amide V, which indicates the S/N advantage of the single band dispersive measurement.
There are two different oligomer series present in all spectra. The oligomer series can be identified by calculating the masses of the end groups and assigning them to specific chemical structures (Pasch and Schrepp, 2003 Weidner et al., 2004). In the present example, the two species are the propionic amide-acid (R-am-ac) and the propionic amide-propionic amide polyamides (R-am-am-R). The use of MALDI-TOF MS as a structure-sensitive detector allows the resolution to be indirectly enhanced since several species coelute, as shown in Fig. 17.21. The polarity of the... [Pg.412]


See other pages where Resolution amides is mentioned: [Pg.187]    [Pg.212]    [Pg.92]    [Pg.97]    [Pg.296]    [Pg.80]    [Pg.115]    [Pg.148]    [Pg.176]    [Pg.182]    [Pg.184]    [Pg.188]    [Pg.340]    [Pg.156]    [Pg.206]    [Pg.38]    [Pg.80]    [Pg.172]    [Pg.215]    [Pg.242]    [Pg.219]    [Pg.136]    [Pg.144]    [Pg.157]    [Pg.161]    [Pg.163]   
See also in sourсe #XX -- [ Pg.42 ]




SEARCH



© 2024 chempedia.info