Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Residue curve maps reactive systems

The transformed variables describe the system composition with or without reaction and sum to unity as do Xi and yi. The condition for azeotropy becomes X, = Y,. Barbosa and Doherty have shown that phase and distillation diagrams constructed using the transformed composition coordinates have the same properties as phase and distillation region diagrams for nonreactive systems and similarly can be used to assist in design feasibility and operability studies [Chem Eng Sci, 43, 529, 1523, and 2377 (1988a,b,c)]. A residue curve map in transformed coordinates for the reactive system methanol-acetic acid-methyl acetate-water is shown in Fig. 13-76. Note that the nonreactive azeotrope between water and methyl acetate has disappeared, while the methyl acetate-methanol azeotrope remains intact. Only... [Pg.1320]

FIG. 13-76 Residue curve map for the reactive system methanol-acetic acid-methyl acetate-water in chemical eqiiihhriiim. [Pg.1320]

In analogous manner, residue curve maps of the reactive membrane separation process can be predicted. First, a diagonal [/e]-matrix is considered with xcc = 5 and xbb = 1 - that is, the undesired byproduct C permeates preferentially through the membrane, while A and B are assumed to have the same mass transfer coefficients. Figure 4.28(a) illustrates the effect of the membrane at nonreactive conditions. The trajectories move from pure C to pure A, while in nonreactive distillation (Fig. 4.27(a)) they move from pure B to pure A. Thus, by application of a C-selective membrane, the C vertex becomes an unstable node, while the B vertex becomes a saddle point This is due to the fact that the membrane changes the effective volatilities (i.e., the products xn a/a) of the reaction system such that xcc a. ca > xbbO-ba-... [Pg.130]

Residue curve maps of the THF system were predicted for reactive distillation at different reaction conditions (Fig. 4.29). The topology of the map at nonreactive conditions (Da = 0) is structured by a binary azeotrope (unstable node) between water and THF. Pure water and pure THF are saddle nodes, while the 1,4-BD vertex is a stable node. [Pg.134]

Figure A.4 Reactive residue curve maps for a ternary system containing inert, reaction A+B+/<- C+/. Figure A.4 Reactive residue curve maps for a ternary system containing inert, reaction A+B+/<- C+/.
Summing up, the influence of the kinetics of a chemical reaction on the vapor-liquid equilibrium is very complex. Physical distillation boundaries may disappear, while new kinetic stable and unstable nodes may appear. As result, the residue curve map with chemical reaction could look very different from the physical plots. As a consequence, evaluating the kinetic effects on residue curve maps is of great importance for conceptual design of reactive distillation systems. However, if the reaction rate is high enough such that the chemical equilibrium is reached quickly, the RCM simplifies considerably. But even in this case the analysis may be complicated by the occurrence of reactive azeotropes. [Pg.469]

FIG. 13-96 Residue curve maps for the reactive system methanol—acetic aci(d-methyl acetate-water in phase and chemical equilibrium at 1-atm pressure, a) Calculated by Barbosa and Doherty [Chem. Eng. Sci., 43,1523 (1988)]. (b) Measured by Song et al. [Ind. Eng. Chem. Res., 37,1917 (1998)]. [Pg.95]

Another recent book dedicated to the conceptual design of distillation systems has been published by Doherty and Mallone (2001). The authors are well-known by outstanding contributions in the field. Emphasis is given to process synthesis aspects, namely to the new methods based on residue curve maps, as well as to the innovative use of Reactive Distillation. [Pg.388]

As a common analysis tool, residue curve mapping (RCM) is well established. Fien and Liu [4] published a comprehensive review of the synthesis and shortcut design of non-reactive separation processes based on RCMs. Barbosa and Doherty [5] developed RCMs for RD processes with single chemical equilibrium reaction. Ung and Doherty [6] extended this method to systems with multiple equUibrium reactions. [Pg.109]

First simulation results on steady state multiplicity of etherification processes were obtained for the MTBE process by Jacobs and Krishna [45] and Nijhuis et al. [78]. These findings attracted considerable interest and triggered further research by others (e. g., [36, 80, 93]). In these papers, a column pressure of 11 bar has been considered, where the process is close to chemical equilibrium. Further, transport processes between vapor, liquid, and catalyst phase as well as transport processes inside the porous catalyst were neglected in a first step. Consequently, the multiplicity is caused by the special properties of the simultaneous phase and reaction equilibrium in such a system and can therefore be explained by means of reactive residue curve maps using oo/< -analysis [34, 35]. A similar type of multiplicity can occur in non-reactive azeotropic distillation [8]. [Pg.257]

Sundmacher and Qi (Chapter 5) discuss the role of chemical reaction kinetics on steady-state process behavior. First, they illustrate the importance of reaction kinetics for RD design considering ideal binary reactive mixtures. Then the feasible products of kinetically controlled catalytic distillation processes are analyzed based on residue curve maps. Ideal ternary as well as non-ideal systems are investigated including recent results on reaction systems that exhibit liquid-phase splitting. Recent results on the role of interfadal mass-transfer resistances on the attainable top and bottom products of RD processes are discussed. The third section of this contribution is dedicated to the determination and analysis of chemical reaction rates obtained with heterogeneous catalysts used in RD processes. The use of activity-based rate expressions is recommended for adequate and consistent description of reaction microkinetics. Since particles on the millimeter scale are used as catalysts, internal mass-transport resistances can play an important role in catalytic distillation processes. This is illustrated using the syntheses of the fuel ethers MTBE, TAME, and ETBE as important industrial examples. [Pg.306]

Residue curve maps have shown to provide valuable insights and design assistance for nonideal systems, particularly for reactive distillation. Transforming the composition variables according to Doherty s approach allows to define a reaction invariant space of... [Pg.103]


See other pages where Residue curve maps reactive systems is mentioned: [Pg.87]    [Pg.100]    [Pg.95]    [Pg.299]    [Pg.1529]    [Pg.1526]    [Pg.262]    [Pg.122]    [Pg.262]    [Pg.325]    [Pg.45]    [Pg.65]    [Pg.281]    [Pg.150]    [Pg.446]   
See also in sourсe #XX -- [ Pg.262 , Pg.275 ]




SEARCH



Reactive residue curve maps

Reactive system

Residual curves

Residual system

Residue curve map

Residue curves

System mapping

© 2024 chempedia.info