Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Residence curve

AR, attainable region, 46 autonomous reside curve expression, 46... [Pg.265]

Measurement of modulus over an extensive temperature range offers more information than T alone (16). Typical modulus—temperature curves are shown in Figure 1. Assuming that the reference temperature is the transition temperature of the copolymer, then curve A of Figure 1 is that of a softer polymer and curve B is that of a harder polymer. Cross-linking of the polymer elevates and extends the mbbery plateau Htde effect on T is noted until extensive cross-linking has been introduced. In practice, cross-linking of methacryhc polymers is used to decrease thermoplasticity and solubihty and to increase residence. [Pg.260]

Fig. 12. The relationship between the mean oceanic residence time, T, yr, and the seawater—cmstal rock partition ratio,, of the elements adapted from Ref. 29. , Pretransition metals I, transition metals , B-metals , nonmetals. Open symbols indicate T-values estimated from sedimentation rates. The sohd line indicates the linear regression fit, and the dashed curves show the Working-Hotelling confidence band at the 0.1% significance level. The horizontal broken line indicates the time required for one stirring revolution of the ocean, T. ... Fig. 12. The relationship between the mean oceanic residence time, T, yr, and the seawater—cmstal rock partition ratio,, of the elements adapted from Ref. 29. , Pretransition metals I, transition metals , B-metals , nonmetals. Open symbols indicate T-values estimated from sedimentation rates. The sohd line indicates the linear regression fit, and the dashed curves show the Working-Hotelling confidence band at the 0.1% significance level. The horizontal broken line indicates the time required for one stirring revolution of the ocean, T. ...
It should be first noted that the curves relating the concentration of ethyl acetate in the solvent mixture and on the stationary phase are straight and horizontal. As the initial concentration of ethyl acetate in mobile phase was 0.35 %w/v, the volume of mobile phase was 100 ml and the mass of silica was 10 g. It follows that, although a total of about 1.2 g of solute was added to the system, about a third of which resided on the silica surface, neither anisole nor nitrobenzene displaced any ethyl acetate from the silica gel. [Pg.102]

The authors repeated the experiment with two, more strongly retained, solutes m-dimethoxy benzene and benzyl acetate. These solutes were found to elute at (k ) values of 10.5 and 27.0 respectively on a silica column operated with the same mobile phase. The results obtained are shown as similar curves in Figure 13. The m dimethoxy benzene, which eluted at a (k ) of 10.5, also failed to displace any ethyl acetate from the silica gel even when more than 0.5 g of solute resided on the silica surface. Consequently, the m-dimethoxy benzene must have also interacted with the surface by a sorption process. [Pg.104]

The distribution of tracer molecule residence times in the reactor is the result of molecular diffusion and turbulent mixing if tlie Reynolds number exceeds a critical value. Additionally, a non-uniform velocity profile causes different portions of the tracer to move at different rates, and this results in a spreading of the measured response at the reactor outlet. The dispersion coefficient D (m /sec) represents this result in the tracer cloud. Therefore, a large D indicates a rapid spreading of the tracer curve, a small D indicates slow spreading, and D = 0 means no spreading (hence, plug flow). [Pg.725]

As discussed in Chapters 8 and 9, the fluid elements in various reactors reside in different intervals of time and, consequently, the residence time is different. This is determined from the response curve... [Pg.1037]

In Fig. 28, the abscissa kt is the product of the reaction rate constant and the reactor residence time, which is proportional to the reciprocal of the space velocity. The parameter k co is the product of the CO inhibition parameter and inlet concentration. Since k is approximately 5 at 600°F these three curves represent c = 1, 2, and 4%. The conversion for a first-order kinetics is independent of the inlet concentration, but the conversion for the kinetics of Eq. (48) is highly dependent on inlet concentration. As the space velocity increases, kt decreases in a reciprocal manner and the conversion for a first-order reaction gradually declines. For the kinetics of Eq. (48), the conversion is 100% at low space velocities, and does not vary as the space velocity is increased until a threshold is reached with precipitous conversion decline. The conversion for the same kinetics in a stirred tank reactor is shown in Fig. 29. For the kinetics of Eq. (48), multiple solutions may be encountered when the inlet concentration is sufficiently high. Given two reactors of the same volume, and given the same kinetics and inlet concentrations, the conversions are compared in Fig. 30. The piston flow reactor has an advantage over the stirred tank... [Pg.119]

Schiesser and Lapidus (S3), in later studies, measured the liquid residencetime distribution for a column of 4-in. diameter and 4-ft height packed with spherical particles of varying porosity and nominal diameters of in. and in. The liquid medium was water, and as tracers sodium chloride or methyl orange were employed. The specific purposes of this study were to determine radial variations in liquid flow rate and to demonstrate how pore diffusivity and pore structure may be estimated and characterized on the basis of tracer experiments. Significant radial variations in flow rate were observed methods are discussed for separating the hydrodynamic and diffusional contributions to the residence-time curves. [Pg.97]

Ross (R2) measured liquid-phase holdup and residence-time distribution by a tracer-pulse technique. Experiments were carried out for cocurrent flow in model columns of 2- and 4-in. diameter with air and water as fluid media, as well as in pilot-scale and industrial-scale reactors of 2-in. and 6.5-ft diameters used for the catalytic hydrogenation of petroleum fractions. The columns were packed with commercial cylindrical catalyst pellets of -in. diameter and length. The liquid holdup was from 40 to 50% of total bed volume for nominal liquid velocities from 8 to 200 ft/hr in the model reactors, from 26 to 32% of volume for nominal liquid velocities from 6 to 10.5 ft/hr in the pilot unit, and from 20 to 27 % for nominal liquid velocities from 27.9 to 68.6 ft/hr in the industrial unit. In that work, a few sets of results of residence-time distribution experiments are reported in graphical form, as tracer-response curves. [Pg.99]

Their conclusions are that the gas residence-time distribution in their mixing vessel is intermediate between that to be expected from one perfectly-mixed vessel and that from two perfectly-mixed vessels of equal size in cascade. The cascade behavior of two equal-sized mixers is approached with a relatively large impeller located half-way between the bottom and top surfaces. The response curve becomes similar to that of one perfectly-mixed vessel when small impellers are used or if the impeller is located below the half-way point. [Pg.314]

Fig. 3. Typical residence-time distribution curves in a gas-liquid dispersion [after Gal-Or and Resnick (G8)]. Fig. 3. Typical residence-time distribution curves in a gas-liquid dispersion [after Gal-Or and Resnick (G8)].
Typical results for these three collision mechanisms are shown in Figure 3 where the relative intensities of the primary, secondary, and tertiary ions are plotted against N, the concentration of molecules in the source. In deriving these curves, the parameters used were kp = 2.0 X 10 9 cc./molecule-sec. k8 = 1.0 X 10 9 cc./molecule-sec. tp = 8.5 X 10 7 sec., (the residence time of the ion (jn/e — 33) in a field of strength 9.1 volts/cm. in the Leeds mass spectrometer). In applying this analysis to a system in which the tertiary ion reacts to form quaternary and higher order ions, ITtotal represents the sum of tertiaries, quaternaries, etc. [Pg.148]

Via a passive scalar method [6] where or, denotes the volume fraction of the i-th phase, while T, represents the diffusivity coefiBcient of the tracer in the i-th phase. The transient form of the scalar transport equation was utilized to track the pulse of tracer through the computational domain. The exit age distribution was evaluated from the normalized concentration curve obtained via measurements at the reactor outlet at 1 second intervals. This was subsequently used to determine the mean residence time, tm and Peclet number, Pe [7]. [Pg.670]


See other pages where Residence curve is mentioned: [Pg.266]    [Pg.266]    [Pg.650]    [Pg.121]    [Pg.404]    [Pg.511]    [Pg.319]    [Pg.365]    [Pg.217]    [Pg.729]    [Pg.1229]    [Pg.104]    [Pg.1108]    [Pg.180]    [Pg.324]    [Pg.349]    [Pg.396]    [Pg.748]    [Pg.655]    [Pg.107]    [Pg.226]    [Pg.72]    [Pg.92]    [Pg.92]    [Pg.96]    [Pg.96]    [Pg.100]    [Pg.116]    [Pg.316]    [Pg.65]    [Pg.17]    [Pg.130]    [Pg.209]    [Pg.163]    [Pg.64]    [Pg.15]   
See also in sourсe #XX -- [ Pg.373 ]




SEARCH



© 2024 chempedia.info