Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Relaxation times spectroscopy

Pulsed ENDOR offers several distinct advantages over conventional CW ENDOR spectroscopy. Since there is no MW power during the observation of the ESE, klystron noise is largely eliminated. Furthemiore, there is an additional advantage in that, unlike the case in conventional CW ENDOR spectroscopy, the detection of ENDOR spin echoes does not depend on a critical balance of the RE and MW powers and the various relaxation times. Consequently, the temperature is not such a critical parameter in pulsed ENDOR spectroscopy. Additionally the pulsed teclmique pemiits a study of transient radicals. [Pg.1581]

The spin-lattice relaxation time, T/, is the time constant for spin-lattice relaxation which is specific for every nuclear spin. In FT NMR spectroscopy the spin-lattice relaxation must keep pace with the exciting pulses. If the sequence of pulses is too rapid, e.g. faster than BT/max of the slowest C atom of a moleeule in carbon-13 resonance, a decrease in signal intensity is observed for the slow C atom due to the spin-lattice relaxation getting out of step. For this reason, quaternary C atoms can be recognised in carbon-13 NMR spectra by their weak signals. [Pg.10]

A Relaxation time measurement in the solid (Al) in solution (A2). B Mechanical spectroscopy. C Variable-temperature NMR spectroscopy (coalescence temperature measurement). D Variable-temperature EPR spectroscopy... [Pg.130]

Up to now it has been tacitly assumed that each molecular motion can be described by a single correlation time. On the other hand, it is well-known, e.g., from dielectric and mechanical relaxation studies as well as from photon correlation spectroscopy and NMR relaxation times that in polymers one often deals with a distribution of correlation times60 65), in particular in glassy systems. Although the phenomenon as such is well established, little is known about the nature of this distribution. In particular, most techniques employed in this area do not allow a distinction of a heterogeneous distribution, where spatially separed groups move with different time constants and a homogeneous distribution, where each monomer unit shows essentially the same non-exponential relaxation. Even worse, relaxation... [Pg.37]

NMR Spectroscopy. All proton-decoupled carbon-13 spectra were obtained on a General Electric GN-500 spectrometer. The vinylldene chloride isobutylene sample was run at 24 degrees centigrade. A 45 degree (3.4us) pulse was used with a Inter-pulse delay of 1.5s (prepulse delay + acquisition time). Over 2400 scans were acquired with 16k complex data points and a sweep width of +/- 5000Hz. Measured spin-lattice relaxation times (Tl) were approximately 4s for the non-protonated carbons, 3s for the methyl groups, and 0.3s for the methylene carbons. [Pg.164]

In studies of superparamagnetic relaxation the blocking temperature is defined as the temperature at which the relaxation time equals the time scale of the experimental technique. Thus, the blocking temperature is not uniquely defined, but depends on the experimental technique that is used for the study of superparamagnetic relaxation. In Mossbauer spectroscopy studies of samples with a broad distribution of relaxation times, the average blocking temperature is commonly defined as the temperature where half of the spectral area is in a sextet and half of it is in a singlet or a doublet form. [Pg.221]

Although the idea of generating 2D correlation spectra was introduced several decades ago in the field of NMR [1008], extension to other areas of spectroscopy has been slow. This is essentially on account of the time-scale. Characteristic times associated with typical molecular vibrations probed by IR are of the order of picoseconds, which is many orders of magnitude shorter than the relaxation times in NMR. Consequently, the standard approach used successfully in 2D NMR, i.e. multiple-pulse excitations of a system, followed by detection and subsequent double Fourier transformation of a series of free-induction decay signals [1009], is not readily applicable to conventional IR experiments. A very different experimental approach is therefore required. The approach for generation of 2D IR spectra defined by two independent wavenumbers is based on the detection of various relaxation processes, which are much slower than vibrational relaxations but are closely associated with molecular-scale phenomena. These slower relaxation processes can be studied with a conventional... [Pg.561]

Approximately 1 g polymer and 0aQ6 M Cr(acac). were dissolved in CDCl. to prepare solutions for ySi and JC NMR spectroscopy. NMR spectra were run on a Varian XL-200 FT-NMR instrument. To aid in obtaining quantitative data, the solution was doped with 0.06 M chromium acetylacetonate [Cr(acac) )] to remove possible signal artifacts resulting from long spin-lattice relaxation times (T s) and tt> nucleay Overhauser effect, well-known features associated with 3Si and JC NMR spectroscopy. This permits quantitative signal acquisition. From the literature (16) and additional work done in this laboratory, it was expected that Cr(acac) would be an inert species. A solution of HMDZ (2.04 g, 12.67 mmole),... [Pg.157]

A few relatively recent published examples of the use of NMR spectroscopy for studying polymer degradation/oxidation processes will now be discussed briefly. At the early stages of degradation, the technique can be used to provide chemical identification and quantification of oxidised species for polyolefins, oxidation sites can be identified by the chemical shifts of -CH2- groups a and ji to carbons bonded to oxygen [85]. Spin-spin relaxation times may be determined by a pulse sequence known as the Hahn spin-echo pulse sequence. [Pg.430]

The industrial application of Plasma Induced Chemical Vapour Deposition (PICVD) of amorphous and microcrystalline silicon films has led to extensive studies of gas phase and surface processes connected with the deposition process. We are investigating the time response of the concentration of species involved in the deposition process, namely SiH4, Si2H6, and H2 by relaxation mass spectroscopy and SiH2 by laser induced fluorescence. [Pg.337]


See other pages where Relaxation times spectroscopy is mentioned: [Pg.1443]    [Pg.211]    [Pg.635]    [Pg.140]    [Pg.168]    [Pg.387]    [Pg.59]    [Pg.188]    [Pg.657]    [Pg.23]    [Pg.502]    [Pg.574]    [Pg.334]    [Pg.201]    [Pg.202]    [Pg.205]    [Pg.211]    [Pg.221]    [Pg.221]    [Pg.231]    [Pg.552]    [Pg.411]    [Pg.776]    [Pg.90]    [Pg.185]    [Pg.194]    [Pg.199]    [Pg.552]    [Pg.599]    [Pg.603]    [Pg.132]    [Pg.218]    [Pg.178]    [Pg.182]    [Pg.725]    [Pg.265]    [Pg.75]    [Pg.91]    [Pg.341]    [Pg.5]   
See also in sourсe #XX -- [ Pg.291 , Pg.292 , Pg.293 , Pg.303 , Pg.304 ]




SEARCH



Dielectric relaxation time-domain spectroscopy

NMR spectroscopy spin-lattice relaxation time

Relaxational spectroscopy

Time spectroscopy

Time-resolved photoelectron spectroscopy relaxation

Ultrafast relaxation time-resolved spectroscopy

© 2024 chempedia.info