Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reinforcing fillers styrene butadiene rubber

Fumed silicas (Si02). Fumed silicas are common fillers in polychloroprene [40], natural rubber and styrene-butadiene rubber base adhesives. Fumed silicas are widely used as filler in several polymeric systems to which it confers thixotropy, sag resistance, particle suspension, reinforcement, gloss reduction and flow enhancement. Fumed silica is obtained by gas reaction between metallic silicon and dry HCl to rend silica tetrachloride (SiCU). SiC is mixed with hydrogen and air in a burner (1800°C) where fumed silica is formed ... [Pg.633]

Figure 12.6. Volume resistivity against filler loading for SBR composites filled with MWNTs and mixtures (10 phr CB + x phr (MWNTs) (A) and TEM image of a styrene-butadiene copolymer (SBR) containing a dual filling (5 phr CB + 5 phr MWNTs) (B). [Reprinted from L. Bokobza, M. Rahmani, C. Belin, J.-L. Bruneel, N.-E. El Bounia "Blends of carbon blacks and multwall carbon nanotubes as reinforcing fillers for hydrocarbon rubbers", Journal of Polymer Science Part B Polymer Physics, 46,1939,2008, permission from John Wiley and Sons]. Figure 12.6. Volume resistivity against filler loading for SBR composites filled with MWNTs and mixtures (10 phr CB + x phr (MWNTs) (A) and TEM image of a styrene-butadiene copolymer (SBR) containing a dual filling (5 phr CB + 5 phr MWNTs) (B). [Reprinted from L. Bokobza, M. Rahmani, C. Belin, J.-L. Bruneel, N.-E. El Bounia "Blends of carbon blacks and multwall carbon nanotubes as reinforcing fillers for hydrocarbon rubbers", Journal of Polymer Science Part B Polymer Physics, 46,1939,2008, permission from John Wiley and Sons].
Radiation vulcanization of carbon fiber reinforced styrene-butadiene rubber causes a substantial increase in crosslink density (Figure 11.4) and tensile strength (Figure 11.5). This magnitude of change is possible only when the interaction between the filler and the matrix is improved. When irradiated in the presence of air, carbon fibers gain functionality which substantially increases their adhesion resulting in a spectacular improvement in properties. SEM studies show that as the dose of radiation increases, the adhesion of the... [Pg.502]

Improvement of Mechanical Properties. The most important application of SAS, and one of the oldest, is the control of the mechanical properties of rubber. SAS are important additives for both styrene-butadiene rubber (SBR) and natural rubber (NR), second in importance only to carbon black (51, 52). Figure 5 demonstrates the increase in tensile strength at room temperature for silicone rubber with various reinforcing fillers and kieselguhr. An improvement is also brought about in the mechanical strength of fluoroelastomers and other special kinds of rubber (51). Table VI summarizes the improvements that may be achieved in other fields. [Pg.473]

The dehydration of soy protein reinforced carboxylated styrene-butadiene composite causes a significant increase of the shear modulus. The effect comes from the increase in rigidity of the filler network and the increase of filler-rubber... [Pg.91]

Addition of fillers can dramatically change mechanical properties of elastomer materials. For example, a pure gum vulcanizate of general purpose styrene-butadiene rubber (SBR) has a tensile strength of no more then 2.2 MPa but, by mixing in 50 parts per hundred weight parts of rubber (p.p.h.r) of a active CB, this value rises more than 10 times to 25 MPa. How CB, being fine powder of practically no mechanical strength, can make reinforcement in rubbers, similar to... [Pg.138]

Use of nanoparticles as fillers in mbbers is highly relevant because end use applications of rubber compounds require filler reinforcement. Most of the literature on rubber nanocomposites is based on the use of nanoclay as the filler. It has been shown that incorporation of nanoclay in synthetic rubbers, like styrene butadiene rubber (SBR), chloroprene rubber (CR), nitrile rubber (NBR), ethylene propylene diene monomer (EPDM) mbber etc. enhances the mechanical, anti-ageing and barrier properties. [Pg.163]

In recent years, lamellar nanofiUers have been established as the most important filler type for barrier and mechanical reinforcement. Dal Point et al. reported a novel nanocomposite series based on styrene-butadiene rubber (SBR latex) and alpha-zirconium phosphate (a-ZrP) lamellar nanofiUers. The use of surface modified nanofiUers improvement the mechanical properties. However, no modification of the gas barrier properties is observed. The addition of bis(triethoxysilylpropyl) tetrasulfide (TESPT) as coupUng agent in the system is discussed on the nanofiUer dispersion state and on the fiUer-matrix inteifacial bonding. Simultaneous use of modified nanofillers and TESPT coupling agent is found out with extraordinary reinforcing effects on both mechanical and gas barrier properties [123]. [Pg.180]

Styrene butadiene rubber is generally marketed at lower viscosity grades than NR and this permits its use in rubber compounding without premastication. Mechanical or chemical peptizing (or dispersing as a colloid, or suspension) is not required in SBR rubber. While most properties of SBR are comparable with NR, in some respects, such as heat build up, tack and gum tensile strength, SBR is inferior but addition of resins and reinforcing fillers improves these properties acceptably. [Pg.59]

A typical tire rubber formulation for tire tread will contain various rubbers, mainly styrene-butadiene (50%) and cA-polybutadiene (12%), various processing aids (2%), softeners (3%), vulcanizing agent (mainly sulfur 1%), accelerators, and reinforcing filler (namely carbon black 30%) so that by bulk, carbon black is the second most used material. [Pg.416]

For electrostatic and steric stabilization, the particles can be viewed effectively as colloids consisting of a soft and deformable corona surrounding a rigid core. Colloidal particles with bulk elastomeric properties are also available. These particles, which are generally of submicron size, are developed and used as reinforcement additives to improve the Impact resistance of various polymer matrices [28-30]. The rubber of choice is often a styrene/butadiene copolymer. The presence of chemical groups at the matrix-filler interface leads to improved adhesion between them. Typically, the addition of about 30% by volume of these elastomeric particles increases the impact strength of a brittle glassy polymer like polystyrene by up to a factor of 10. For some applications, particles with more complex architecture have been... [Pg.124]

For instance, Kraus and Gruver (1970) found that the Tg of a styrene-butadiene copolymer increased only 0.2°C for every ten parts per hundred by weight of reinforcing carbon black added, and that the coefficient of thermal expansion of the polymer component in the rubbery region was substantially unaffected by the presence of filler. While Yim and St. Pierre (1969) found that the Tg of silicone rubber increased up to 8 C with the addition of 40 parts per hundred by weight of reinforcing silica, this effect is still rather modest. [Pg.319]


See other pages where Reinforcing fillers styrene butadiene rubber is mentioned: [Pg.127]    [Pg.104]    [Pg.362]    [Pg.2875]    [Pg.127]    [Pg.277]    [Pg.281]    [Pg.688]    [Pg.247]    [Pg.99]    [Pg.632]    [Pg.368]    [Pg.180]    [Pg.181]    [Pg.847]    [Pg.669]    [Pg.127]    [Pg.516]    [Pg.608]    [Pg.112]    [Pg.384]    [Pg.438]    [Pg.299]    [Pg.135]    [Pg.347]    [Pg.19]    [Pg.19]    [Pg.502]    [Pg.250]    [Pg.1000]    [Pg.534]    [Pg.601]    [Pg.115]   


SEARCH



Reinforcement fillers

Reinforcements rubbers

Reinforcing fillers

Rubber fillers

Rubbers reinforcing fillers

Styrene-butadiene

Styrene-butadiene rubber

© 2024 chempedia.info