Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Refractory salts

Refractory fluid retention rarely may require discontinuation of minoxidil. Under close medical supervision, it may be possible to resolve refractory salt retention by discontinuing the drug for 1 or 2 days, and then resuming treatment in conjunction with vigorous diuretic therapy. [Pg.569]

A number of anions forming refractory salts with metals retard the dissociation into free atoms in the flame. The result is a reduction in the... [Pg.27]

It is also used as a reducing agent in the production of pure uranium and other metals from their salts. The hydroxide (milk of magnesia), chloride, sulfate (Epsom salts), and citrate are used in medicine. Dead-burned magnesite is employed for refractory purposes such as brick and liners in furnaces and converters. [Pg.29]

Two types of magnesia, caustic-calcined and periclase (a refractory material), are derived from dolomitic lime. Lime is required in refining food-grade salt, citric acid, propjiene and ethylene oxides, and ethylene glycol, precipitated calcium carbonate, and organic salts, such as calcium stearate, lactate, caseinate. [Pg.178]

The cell for this process is unlike the cell for the electrolysis of aluminum which is made of carbon and also acts as the cathode. The cell for the fused-salt electrolysis is made of high temperature refractory oxide material because molten manganese readily dissolves carbon. The anode, like that for aluminum, is made of carbon. Cathode contact is made by water-cooled iron bars that are buried in the wall near the hearth of the refractory oxide cell. [Pg.496]

The tertiary metal phosphates are of the general formula MPO where M is B, Al, Ga, Fe, Mn, etc. The metal—oxygen bonds of these materials have considerable covalent character. The anhydrous salts are continuous three-dimensional networks analogous to the various polymorphic forms of siHca. Of limited commercial interest are the alurninum, boron, and iron phosphates. Boron phosphate [13308-51 -5] BPO, is produced by heating the reaction product of boric acid and phosphoric acid or by a dding H BO to H PO at room temperature, foUowed by crystallization from a solution containing >48% P205- Boron phosphate has limited use as a catalyst support, in ceramics, and in refractories. [Pg.335]

Borides are inert toward nonoxidizing acids however, a few, such as Be2B and MgB2, react with aqueous acids to form boron hydrides. Most borides dissolve in oxidizing acids such as nitric or hot sulfuric acid and they ate also readily attacked by hot alkaline salt melts or fused alkaU peroxides, forming the mote stable borates. In dry air, where a protective oxide film can be preserved, borides ate relatively resistant to oxidation. For example, the borides of vanadium, niobium, tantalum, molybdenum, and tungsten do not oxidize appreciably in air up to temperatures of 1000—1200°C. Zirconium and titanium borides ate fairly resistant up to 1400°C. Engineering and other properties of refractory metal borides have been summarized (1). [Pg.218]

A number of attempts to produce tire refractory metals, such as titanium and zirconium, by molten chloride electrolysis have not met widr success with two exceptions. The electrolysis of caesium salts such as Cs2ZrCl6 and CsTaCle, and of the fluorides Na2ZrF6 and NaTaFg have produced satisfactoty products on the laboratory scale (Flengas and Pint, 1969) but other systems have produced merely metallic dusts aird dendritic deposits. These observations suggest tlrat, as in tire case of metal deposition from aqueous electrolytes, e.g. Ag from Ag(CN)/ instead of from AgNOj, tire formation of stable metal complexes in tire liquid electrolyte is the key to success. [Pg.349]

Hydrides of the types AnHi (An = Th, Np, Pu, Am, Cm) and AnHs (Pa —> Am), as well as ThaHis (i.e. ThHs.yj) have been so obtained but are not very stable thermally and are decidedly unstable with respect to air and moisture. Borides, carbides, silicides and nitrides (q.v.) are mostly less sensitive chemically and, being refractory materials, those of Th, U and Pu in particular have been studied extensively as possible nuclear fuels.Their stoichiometries are very varied but the more important ones are the semi-metallic monocarbides, AnC, and mononitrides, AnN, all of which have the rock-salt structure they are predominantly ionic... [Pg.1267]

Consideration will also be given to attack arising from contact with solids such as refractories, and with molten materials such as salts, glasses, and lower-melting-point metals and alloys. On a fundamental basis, the distinction between some of these latter reactions and normal-temperature aqueous corrosion is not always clear, since galvanic effects may be of significance in both cases, but for practical purposes a distinction can be made on the basis of the temperature involved. [Pg.951]

Perhaps the closest approach to pure oxidation in everyday conditions arises in domestic electric heating appliances where the elements are exposed to the air. At some points the elements are necessarily in contact with supporting refractories, and if these are not of adequate purity, accelerated corrosion leading to early failure can occur. In a similar way the sheathed radiant-type elements of electric cookers usually fail owing to the corrosive effects of contaminants such as animal fats or salts from spilled liquids. [Pg.952]


See other pages where Refractory salts is mentioned: [Pg.24]    [Pg.179]    [Pg.946]    [Pg.167]    [Pg.137]    [Pg.126]    [Pg.54]    [Pg.54]    [Pg.133]    [Pg.136]    [Pg.50]    [Pg.330]    [Pg.193]    [Pg.41]    [Pg.56]    [Pg.56]    [Pg.13]    [Pg.291]    [Pg.451]    [Pg.191]    [Pg.477]    [Pg.175]    [Pg.479]    [Pg.1219]    [Pg.265]    [Pg.265]    [Pg.139]    [Pg.316]    [Pg.146]    [Pg.242]    [Pg.1231]    [Pg.294]    [Pg.295]    [Pg.297]    [Pg.434]    [Pg.564]    [Pg.309]   
See also in sourсe #XX -- [ Pg.27 ]




SEARCH



© 2024 chempedia.info