Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reflection elastic

A useful parameter to characterize adsorption is the adsorption time. Let us first assume that no forces act between the surface and a gas molecule. Then, if a molecule hits the surface, it is reflected elastically with the same energy. An energy transfer between the surface and gas... [Pg.178]

Several other optical techniques that rely on various mechanisms by which light interacts with matter, including absorption, reflection, elastic scattering and autofluorescence, are also being developed for cancer diagnostics. This section will discuss these optical biopsy techniques. [Pg.316]

Subsequently others have refined Eq. 11.8 to account for the type of molecular reflection from the particle surface (whether diffuse or specular, elastic or inelastic). Mason and Chapman (1962), by assuming all molecules to be reflected elastically, suggest increasing Eq. 11.8 by a factor of 1 + 4tt/9. More recently Talbot et al. (1980) derived an expression of the same form as Eq. 11.8 but increased by a factor of... [Pg.97]

Backscattered electron imagery Incident electrons reflected (elastically) off a material... [Pg.446]

Properties of materials Defined as those attributes, largely physical, (hat are intrinsic to the class of material. They would, for instance, include melting point, electrical and thermal conductivities, hardness, density, reflectivity, elasticity, etc. [Pg.24]

The interest in vesicles as models for cell biomembranes has led to much work on the interactions within and between lipid layers. The primary contributions to vesicle stability and curvature include those familiar to us already, the electrostatic interactions between charged head groups (Chapter V) and the van der Waals interaction between layers (Chapter VI). An additional force due to thermal fluctuations in membranes produces a steric repulsion between membranes known as the Helfrich or undulation interaction. This force has been quantified by Sackmann and co-workers using reflection interference contrast microscopy to monitor vesicles weakly adhering to a solid substrate [78]. Membrane fluctuation forces may influence the interactions between proteins embedded in them [79]. Finally, in balance with these forces, bending elasticity helps determine shape transitions [80], interactions between inclusions [81], aggregation of membrane junctions [82], and unbinding of pinched membranes [83]. Specific interactions between membrane embedded receptors add an additional complication to biomembrane behavior. These have been stud-... [Pg.549]

Figure Bl.25.12. Excitation mechanisms in electron energy loss spectroscopy for a simple adsorbate system Dipole scattering excites only the vibration perpendicular to the surface (v ) in which a dipole moment nonnal to the surface changes the electron wave is reflected by the surface into the specular direction. Impact scattering excites also the bending mode v- in which the atom moves parallel to the surface electrons are scattered over a wide range of angles. The EELS spectra show the higlily intense elastic peak and the relatively weak loss peaks. Off-specular loss peaks are in general one to two orders of magnitude weaker than specular loss peaks. Figure Bl.25.12. Excitation mechanisms in electron energy loss spectroscopy for a simple adsorbate system Dipole scattering excites only the vibration perpendicular to the surface (v ) in which a dipole moment nonnal to the surface changes the electron wave is reflected by the surface into the specular direction. Impact scattering excites also the bending mode v- in which the atom moves parallel to the surface electrons are scattered over a wide range of angles. The EELS spectra show the higlily intense elastic peak and the relatively weak loss peaks. Off-specular loss peaks are in general one to two orders of magnitude weaker than specular loss peaks.
Water Hammer When hquid flowing in a pipe is suddenly decelerated to zero velocity by a fast-closing valve, a pressure wave propagates upstream to the pipe inlet, where it is reflected a pounding of the hne commonly known as water hammer is often produced. For an instantaneous flow stoppage of a truly incompressible fluid in an inelastic pipe, the pressure rise would be infinite. Finite compressibility of the flmd and elasticity of the pipe limit the pressure rise to a finite value. The Joukowstd formula gives the maximum pressure... [Pg.670]

Successive reflections of the pressure wave between the pipe inlet and the closed valve result in alternating pressure increases and decreases, which are gradually attenuated by fluid friction and imperfect elasticity of the pipe. Periods of reduced pressure occur while the reflected pressure wave is travehng from inlet to valve. Degassing of the liquid may occur, as may vaporization if the pressure drops below the vapor pressure of the liquid. Gas and vapor bubbles decrease the wave velocity. Vaporization may lead to what is often called liquid column separation subsequent collapse of the vapor pocket can result in pipe rupture. [Pg.670]

The usefulness of this formula is restricted by the difficulty of obtaining good values to substitute in it. They must apply to the alloy selected, and be derived from carefully controlled tests on it. The stress value, S, reflects an engineer s Judgment in the selection of elastic limit or some arbitrary yield strength. The modulus value must match this. The restraint coefficent, K, is seldom known with any precision. [Pg.267]

Crossing an ionization threshold means that electrons are lost from the primary beam as a result of ionization of a core hole. Thus if the reflected current of electrons at the primary energy, more usually termed the elastically reflected current, is monitored as a function of energy, a sharp decrease should be observed as a threshold is crossed. This is the principle of operation of DAPS. It is, in a sense, the inverse of AEAPS, and, indeed, if spectra from the two techniques from the same surface are compared, they can be seen to be mirror images. Background problems occur in DAPS also. [Pg.275]

As is true for macroscopic adhesion and mechanical testing experiments, nanoscale measurements do not a priori sense the intrinsic properties of surfaces or adhesive junctions. Instead, the measurements reflect a combination of interfacial chemistry (surface energy, covalent bonding), mechanics (elastic modulus, Poisson s ratio), and contact geometry (probe shape, radius). Furthermore, the probe/sample interaction may not only consist of elastic deformations, but may also include energy dissipation at the surface and/or in the bulk of the sample (or even within the measurement apparatus). Study of rate-dependent adhesion and mechanical properties is possible with both nanoindentation and... [Pg.193]

Strength and Stiffness. Thermoplastic materials are viscoelastic which means that their mechanical properties reflect the characteristics of both viscous liquids and elastic solids. Thus when a thermoplastic is stressed it responds by exhibiting viscous flow (which dissipates energy) and by elastic displacement (which stores energy). The properties of viscoelastic materials are time, temperature and strain rate dependent. Nevertheless the conventional stress-strain test is frequently used to describe the (short-term) mechanical properties of plastics. It must be remembered, however, that as described in detail in Chapter 2 the information obtained from such tests may only be used for an initial sorting of materials. It is not suitable, or intended, to provide design data which must usually be obtained from long term tests. [Pg.18]

Forced vital capacity (FVC) quantifies the maximum air volume expired following a maximal inspiration and is one of the basic measures of analyzing flow changes such as reduced airway patency observed in asthma. To measure FVC, an individual inhales maximally and then exhales as rapidly and completely as possible. FVC primarily reflects the elastic properties of the respiratory tract. The gas volume forcibly expired within a given time interval, FEV (where t is typically one second, FEVj q)... [Pg.210]

The fluid mechanics origins of shock-compression science are reflected in the early literature, which builds upon fluid mechanics concepts and is more concerned with basic issues of wave propagation than solid state materials properties. Indeed, mechanical wave measurements, upon which much of shock-compression science is built, give no direct information on defects. This fluids bias has led to a situation in which there appears to be no published terse description of shock-compressed solids comparable to Kormer s for the perfect lattice. Davison and Graham described the situation as an elastic fluid approximation. A description of shock-compressed solids in terms of the benign shock paradigm might perhaps be stated as ... [Pg.6]

Prall-heit, /. tightness, tenseness, tension plumpness, -kraft, /. resiliency elasticity, -wand, /. baffle, -winkel, m. angle of reflection. [Pg.346]


See other pages where Reflection elastic is mentioned: [Pg.360]    [Pg.370]    [Pg.1207]    [Pg.9]    [Pg.22]    [Pg.285]    [Pg.108]    [Pg.197]    [Pg.562]    [Pg.360]    [Pg.370]    [Pg.1207]    [Pg.9]    [Pg.22]    [Pg.285]    [Pg.108]    [Pg.197]    [Pg.562]    [Pg.203]    [Pg.696]    [Pg.884]    [Pg.958]    [Pg.8]    [Pg.441]    [Pg.130]    [Pg.455]    [Pg.100]    [Pg.208]    [Pg.27]    [Pg.477]    [Pg.21]    [Pg.137]    [Pg.327]    [Pg.446]    [Pg.448]    [Pg.516]    [Pg.111]    [Pg.115]    [Pg.498]    [Pg.54]    [Pg.30]    [Pg.41]    [Pg.873]    [Pg.630]   
See also in sourсe #XX -- [ Pg.22 , Pg.153 , Pg.246 ]




SEARCH



© 2024 chempedia.info