Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reference interaction site theory

Theories based on the solution to integral equations for the pair correlation fiinctions are now well developed and widely employed in numerical and analytic studies of simple fluids [6]. Furtlier improvements for simple fluids would require better approximations for the bridge fiinctions B(r). It has been suggested that these fiinctions can be scaled to the same fiinctional fomi for different potentials. The extension of integral equation theories to molecular fluids was first accomplished by Chandler and Andersen [30] through the introduction of the site-site direct correlation fiinction c r) between atoms in each molecule and a site-site Omstein-Zemike relation called the reference interaction site... [Pg.480]

One important class of integral equation theories is based on the reference interaction site model (RISM) proposed by Chandler [77]. These RISM theories have been used to smdy the confonnation of small peptides in liquid water [78-80]. However, the approach is not appropriate for large molecular solutes such as proteins and nucleic acids. Because RISM is based on a reduction to site-site, solute-solvent radially symmetrical distribution functions, there is a loss of infonnation about the tliree-dimensional spatial organization of the solvent density around a macromolecular solute of irregular shape. To circumvent this limitation, extensions of RISM-like theories for tliree-dimensional space (3d-RISM) have been proposed [81,82],... [Pg.144]

The integral equation method is free of the disadvantages of the continuum model and simulation techniques mentioned in the foregoing, and it gives a microscopic picture of the solvent effect within a reasonable computational time. Since details of the RISM-SCF/ MCSCF method are discussed in the following section we here briefly sketch the reference interaction site model (RISM) theory. [Pg.419]

If each polymer is modeled as being composed of N beads (or sites) and the interaction potential between polymers can be written as the sum of site-site interactions, then generalizations of the OZ equation to polymers are possible. One approach is the polymer reference interaction site model (PRISM) theory [90] (based on the RISM theory [91]) which results in a nonlinear integral equation given by... [Pg.110]

The original OZ equation can be applied only to liquids composed of spherically symmetrical particles, namely atoms. Chandler and Andersen proposed one of the possible extensions to treat general polyatomic cases, referred to as the reference interaction site model (RISM) or site-site OZ (SSOZ) theory [4], This has been further extended by Hirata and Rossky to be applicable to polar molecules such as water [5], In the RISM theory,... [Pg.595]

Sato presents an alternative method to both continuum solvation models and hybrid QM/MM or ONIOM approaches. This is represented by the reference interaction site model (RISM) formalism when combined to a QM description of the solute to give the RISM-SCF theory. [Pg.634]

The PRISM (Polymer-Reference-Interaction-Site model) theory is an extension of the Ornstein-Zernike equation to molecular systems [20-22]. It connects the total correlation function h(r)=g(r) 1, where g(r) is the pair correlation function, with the direct correlation function c(r) and intramolecular correlation functions (co r)). For a primitive model of a polyelectrolyte solution with polymer chains and counterions only, there are three different relevant correlation functions the monomer-monomer, the counterion-counterion, and the monomer-counterion correlation function [23, 24]. Neglecting chain end effects and considering all monomers as equivalent, we obtain the following three PRISM equations for a homogeneous and isotropic system in Fourier space ... [Pg.72]

This point of interest is brought forward by the RISM approach to the structure of molecular liquids, and a RISM model with HNC closure supports a similar result for the excess chemical potential in terms of atom-atom correlations (Singer and Chandler, 1985 Hirata, 1998). RISM - reference interaction site model - is an acronym that refers to a class of theories for the joint two-atom distributions in molecular liquids. The most basic decision of RISM models is that theories of molecular liquids should focus first on the atom-atom distributions extracted from X-ray and neutron scattering data rather than more complex possibilities this highly practical point was not so obvious in an earlier epoch when models of molecular liquids were scarcely realistic on an atomic scale. That basic decision was encapsulated by invention of a site-site (or atom-atom) Ornstein-Zernike (SSOZ) (Cummings and Stell, 1982) equation that involved intramolecular atom-atom correlations. The original suggestions (Chandler and Andersen, 1972) were sufficiently successful as to support subsequent flamboyant developments, and to be substantially impervious to more fundamental improvements (Chandler et al, 1982). For these reasons a full discussion of the RISM models wouldn t fit here. Fortunately, a devoted exposition of current RISM work is already available (Hirata, 1998). [Pg.140]

Integral equation ideas on the structure of monatomic liquids were first modified and applied to molecular liquids by Chandler and Andersen, Their classic work is now referred to as the reference interaction site model (RISM) of molecular liquids. Polymer RISM (PRISM) is essentially an extension of RISM theory that successfully describes the structure of flexible polymer chains in the liquid state. [Pg.198]

Statistical thermodynamics is also changing in recent years. Newly developed RISM (Reference Interactions Site Model) theory has no restriction on the shape of solute species, in contrast to old theories in which spherical species are usually assumed. Ab initio calculations are being combined with molecular dynamic simulations. This combination becomes possible because of the improvement of high-speed computers. The polarization effect and multibody problem will be... [Pg.5]

In this section we introduce integral equation theories (IETs) and approximate closures applicable for various models of polyelectrolyte solutions. A theory for linear polyelectrolytes based on the polymer reference interaction site model has also been proposed [58, 59], but this approach will not be reviewed here. [Pg.204]

In this section, we will review some of the results obtained for homogeneous fluids. The focus of the section strongly reflects the author s particular interest rather than a complete review of all work done in this area. To a large extent, we will concentrate on aspects that have not been reviewed previously, or on areas that developed since those reviews. The first section deals with the influence of electrostatic interactions on the structure factor, and we stress the decoupling of dipole-dipole interactions from the structure factor, although there is a strong effect on particular g y r) s. In Section V.B we consider the dielectric constant obtained from the CSL equation with particular reference to the influence of shape forces in the dielectric properties. Section V.C considers the application of interaction site theories to calculate thermodynamic properties and fluid phase equilibria. [Pg.514]

Another, a similar route that considers interactions between individual elements of a system, is the reference interaction site model, RISM. The theory involves computations of the system structure by means of the probability density function, which describes location of all N particles of the system. The binary interactions define the pair-density function ... [Pg.166]

As concerns the site-site approach the most important theory is the reference interaction site model , or RISM. This method applies to an intermolecular pair potential modeled by a site-site form, i.e., V(rc0iC02 ) = 5 apV p (r ) and its original intuitive derivation is based on exploring the possibility of decomposing g(r o),a)2) also in the same form, i.e., as a sum of site-site gap(r)s. [Pg.466]

In the weak-segregation regime, the phase behavior of a polymer melt composed of flexible-chain macromolecules can be described on the basis of the random-phase approximation (RPA) or the polymer integral equation reference interaction site model (pRISM) theory that allow finding the conditions under which the spatially homogeneous state of the system becomes unstable. [Pg.711]

Kezic, B. and A. Perera. 2011. Towards a more aceurate reference interaction site model integral equation theory for molecular liquids. Journal of Chemical Physics. 135, 234104. Kim, J. I. 1978. A critical study of the Ph4AsPh4B assumption for single ion thermodynamics in amphiprotic and dipolar-aprotic solvents Evaluation of physical parameters relevant to theoretical consideration. Zeitschriftfur Physikalische Chemie. 113,129. [Pg.338]


See other pages where Reference interaction site theory is mentioned: [Pg.2368]    [Pg.419]    [Pg.362]    [Pg.465]    [Pg.85]    [Pg.270]    [Pg.177]    [Pg.57]    [Pg.105]    [Pg.136]    [Pg.457]    [Pg.187]    [Pg.189]    [Pg.98]    [Pg.4]    [Pg.98]    [Pg.478]    [Pg.2368]    [Pg.194]    [Pg.57]    [Pg.2]    [Pg.102]    [Pg.461]    [Pg.219]    [Pg.269]   
See also in sourсe #XX -- [ Pg.98 , Pg.103 , Pg.116 , Pg.117 ]

See also in sourсe #XX -- [ Pg.98 , Pg.103 , Pg.116 , Pg.117 ]




SEARCH



Interaction Theory

Interaction sites

Interactive sites

Polymer reference interaction site model PRISM) theory

Polymer reference interaction site model theory

Reference Interaction Site Model theory

Reference interaction site theory extended

Reference interaction site theory three-dimensional

Reference site

© 2024 chempedia.info