Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Transition metal hydrides reduction

Conjugate reduction by the transition metal-hydride (TM - H) accompanied by transition metal enolate formation... [Pg.115]

After the initial two reports of Rh- and Co-catalyzed reductive aldol couplings, further studies did not appear in the literature until the late 1990s. Beyond 1998, several stereoselective and enantioselective reductive aldol reactions were developed, which are catalyzed by a remarkably diverse range of metal complexes, including those based upon Pd, Cu, Ir, and In. In this chapter, transition metal-catalyzed aldol, Michael, and Mannich reactions that proceed via transition metal hydride-promoted conjugate reduction are reviewed. [Pg.116]

Eq. (8) requires determination of the two-electron oxidation potential of L M by electrochemical methods. When combined with the two-electron reduction of protons in Eq. (9), the sum provides Eq. (10), the AGh- values of which can be compared for a series of metal hydrides. Another way to determine the AGh-entails the thermochemical cycle is shown in Scheme 7.3. This method requires measurement of the K of Eq. (11) for a metal complex capable of heterolytic cleavage of H2, using a base (B), where the pK., of BH+ must be known in the solvent in which the other measurements are conducted. In several cases, Du-Bois et al. were able to demonstrate that the two methods gave the same results. The thermodynamic hydricity data (AGh- in CH3CN) for a series of metal hydrides are listed in Table 7.4. Transition metal hydrides exhibit a remarkably large range of thermodynamic hydricity, spanning some 30 kcal mol-1. [Pg.162]

The diversity of the substrates, catalysts, and reducing methods made it difficult to organize the material of this chapter. Thus, we have chosen an arrangement related to that used by Kaesz and Saillant [3] in their review on transition-metal hydrides - that is, we have classified the subject according to the applied reducing agents. Additional sections were devoted to the newer biomimetic and electrochemical reductions. Special attention was paid mainly to those methods which are of preparative value. Stoichiometric hydrogenations and model reactions will be discussed only in connection with the mechanisms. [Pg.516]

Electrochemical reductions of CO2 at a number of metal electrodes have been reported [12, 65, 66]. CO has been identified as the principal product for Ag and Au electrodes in aqueous bicarbonate solutions at current densities of 5.5 mA cm [67]. Different mechanisms for the formation of CO on metal electrodes have been proposed. It has been demonstrated for Au electrodes that the rate of CO production is proportional to the partial pressure of CO2. This is similar to the results observed for the formation of CO2 adducts of homogeneous catalysts discussed earlier. There are also a number of spectroscopic studies of CO2 bound to metal surfaces [68-70], and the formation of strongly bound CO from CO2 on Pt electrodes [71]. These results are consistent with the mechanism proposed for the reduction of CO2 to CO by homogeneous complexes described earlier and shown in Sch. 2. Alternative mechanistic pathways for the formation of CO on metal electrodes have proposed the formation of M—COOH species by (1) insertion of CO2 into M—H bonds on the surface or (2) by outer-sphere electron transfer to CO2 followed by protonation to form a COOH radical and then adsorption of the neutral radical [12]. Certainly, protonation of adsorbed CO2 by a proton on the surface or in solution would be reasonable. However, insertion of CO2 into a surface hydride would seem unlikely based on precedents in homogeneous catalysis. CO2 insertion into transition metal hydrides complexes invariably leads to formation of formate complexes in which C—H bonds rather than O—H bonds have been formed, as discussed in the next section. [Pg.214]

CO formation on copper electrodes appears to be accompanied by hydride formation as well [103]. In Sch. 3, the surface bound CO is reduced by a hydride transfer reaction to form a formyl species as shown in step 2. There are precedents in organometallic chemistry for late transition metal hydrides reducing bound CO [105-109]. Protonation of the adsorbed formyl in step 3 results in the formation of a hydroxy carbene species [110, 111]. This hydroxycarbene species could be considered to be an adsorbed and rearranged form of formaldehyde, and the reduction of formaldehyde at a copper electrode has been reported to form hydrocarbons [102]. However, reduction of... [Pg.219]

The calculated enthalpy change for this reaction is approximately 20 kJ mol-1. This result is of considerable consequence because it suggests that reduction of CO with a transition metal hydride, is not a useful route to organic products (see Fisher-Tropsch catalysis, page 715). [Pg.885]

As the rate of cyclization becomes slower, the reactivity of the precursor becomes more important. To ensure that the radical generation step does not break the chain, it is important to use the most reactive precursor available. For very slow cyclizations, the advice is simple use iodides whenever possible. The purity of the precursor is also critical for slow cyclizations because tin hydride can sometimes react with impurities to generate hydrogen atom sources that are much more reactive than itself. Any impurities that might generate thiols or selenols may cause undue amounts of reduction (thus, the purity of phenyl sulfides and selenides is especially important). Metal impurities, which may form transition metal hydrides, can be devastating, even for fast cyclizations.41 Empirically, it seems that breaking of the chain is less of... [Pg.790]

Recent mechanistic studies on transition metal-catalysed hydrogen transfer reactions have been reviewed. Experimental and theoretical studies showed that hydrogen transfer reactions proceed through different pathways. For transition metals, hydridic routes are the most common. Within the hydridic family there are two main groups the monohydride and dihydride routes. Experimentally, it was found that whereas rhodium and iridium catalysts favour the monohydride route, the mechanism for ruthenium catalysts proceeds by either pathway, depending on the ligands. A direct hydrogen transfer mechanism has been proposed for Meerwein-Ponndorf-Verley (MPV) reductions.352... [Pg.137]

Addition of hydride bonds of main group metals such as B—H, Mg—H, Al—H, Si—H and Sn—H to alkenes and alkynes to give 513 and 514 is called hydrometallation and is an important synthetic route to compounds of the main group metals. Further transformation of the addition product of alkenes 513 and alkynes 514 to 515,516 and 517 is possible. Addition of B—H, Mg—H, Al—H and Sn—H bonds proceeds without catalysis, but their hydrometallations are accelerated or proceed with higher stereoselectivity in the presence of transition metal catalysts. Hydrometallation with some hydrides proceeds only in the presence of transition metal catalysts. Hydrometallation starts by the oxidative addition of metal hydride to the transition metal to generate transition metal hydrides 510. Subsequent insertion of alkene or alkyne to the M—H bonds gives 511 or 512. The final step is reductive elimination. Only catalysed hydrometallations are treated in this section. [Pg.284]

In one group of reductive-elimination reactions, an HSiR3 molecule can be displaced from a silyl-substituted transition-metal hydride ML (H)(SiR3) by more efficient 7r-bonding ligands such as CO, PR3, C2H4, acetylenes or N2 which favor a lower oxidation state of M ... [Pg.150]

The proposed reaction mechanism (see Scheme 4) is similar to that which is well established for olefin reduction, with the insertion of a meial-hydride bond into the carbonyl group coordinated to (he metal center. A mechanism in which reduction occurs by a simple nucIcopliiUc attack of the hydrogen atom of the transition metal hydride (which behaves like Blit or AlHa ) into the carbonyl group of the aldehyde, cannot be ignored ... [Pg.155]

This is a common method for preparing transition-metal hydrides (see Table I) " . Borohydride reduction is complex, e.g., RujfCOjj with NaBH in THF gives over a dozen products, but a few useful mechanistic generalizations can be offered. Syntheses of metal hydrides proceed through intermediate borohydride complexes. Electron-pair bases (an ethereal solvent may be sufficient) are then necessary to complex and remove BHj. In a few examples the borohydride complexes are observable ... [Pg.409]

The state of the art of reductions with metal hydrides a decade ago was the subject of comprehensive reviews. A detailed survey of reductions of carbonyl compounds with alkali and alkaline earth metal hydrides, borane and derivatives, alane and derivatives, metal borohydrides, metal aluminohydrides, silanes, stannanes and transition metal hydrides was compiled. The properties, preparation and applications of each reagent were discussed together with methods for their determination, handling techniques... [Pg.1]

All of the proposed mechanisms for the reduction of alkynes with metal hydride-transition metal halide combinations involve an initial hydrometallation of the ir-system by the transition metal hydride, formed by the reaction of the original metal hydride with the transition metal halide, to form the vi-nylmetallic intermediate (99 equation 38). For the reduction of alkenes, similar alkylmetallic intermediates are implied to be formed. In the case of the reduction of alkenes with NaBH4 in the presence of Co" in alcohol solution, the hydrometallation reaction appears to be reversible as evidenced by the incorporation of an excess of deuterium when NaBD4 was used in the reduction. ... [Pg.483]

REDUCTIONS WITH STOICHIOMETRIC AMOUNTS OF TRANSITION METAL HYDRIDES... [Pg.523]


See other pages where Transition metal hydrides reduction is mentioned: [Pg.240]    [Pg.243]    [Pg.144]    [Pg.70]    [Pg.251]    [Pg.252]    [Pg.298]    [Pg.300]    [Pg.242]    [Pg.215]    [Pg.251]    [Pg.143]    [Pg.144]    [Pg.156]    [Pg.240]    [Pg.243]    [Pg.33]    [Pg.162]    [Pg.253]    [Pg.149]    [Pg.58]    [Pg.413]    [Pg.414]    [Pg.22]    [Pg.524]    [Pg.1392]    [Pg.222]   
See also in sourсe #XX -- [ Pg.548 ]

See also in sourсe #XX -- [ Pg.8 , Pg.548 ]

See also in sourсe #XX -- [ Pg.8 , Pg.548 ]




SEARCH



Metal hydride reduction

Transition hydrides

Transition metal-hydrides

Transition metals metallic hydrides

Transition metals reductions

© 2024 chempedia.info