Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reduce metal impurities

In addition, producers and users of diaphragm-cell caustic may wish to reduce metal impurities by utilizing the porous cathode cell process (PPG Industries) (1291. The process consists of an electrolysis cell with porous nonmetallic cathodes. The caustic soda (50 wt%) is freed from iron, nickel, lead, and... [Pg.73]

If tlie level(s) associated witli tlie defect are deep, tliey become electron-hole recombination centres. The result is a (sometimes dramatic) reduction in carrier lifetimes. Such an effect is often associated witli tlie presence of transition metal impurities or certain extended defects in tlie material. For example, substitutional Au is used to make fast switches in Si. Many point defects have deep levels in tlie gap, such as vacancies or transition metals. In addition, complexes, precipitates and extended defects are often associated witli recombination centres. The presence of grain boundaries, dislocation tangles and metallic precipitates in poly-Si photovoltaic devices are major factors which reduce tlieir efficiency. [Pg.2887]

Most of the heavy-metal impurities present in 2inc salt solutions must be removed before the precipitation reaction, or these form insoluble colored sulfides that reduce the whiteness of the 2inc sulfide pigment. This end is usually achieved by the addition of 2inc metal which reduces most heavy-metal ions to their metallic form. The brightness of 2inc sulfide can be improved by the addition of a small amount of cobalt salts (ca 0.04% on a Co/Zn basis) (20). Barium sulfate [7727-43-7] formed in the first step is isolated and can be used as an extender. [Pg.10]

Redistillation does not gready reduce the impurity level of volatile materials such as magnesium. Volatile alkaH metals can be separated from calcium by passing the vapors over refractory oxides such as or Cr202 to form the nonvolatile Na20 and K O (14). Purification techniques include... [Pg.401]

Direct Reduction with Metals. PoUucite can be directly reduced by heating the ore in the presence of calcium to 950°C in a vacuum (20), or in the presence of either sodium or potassium to 750°C in an inert atmosphere (21). Extraction is not complete. Excessive amounts of the reducing metal is required and the resultant cesium metal is impure except when extensive distiUation purification is carried out. Engineering difficulties in this process are significant, hence, this method is not commerciaUy used. [Pg.375]

Benzyl chloride is manufactured by the thermal or photochemical chlorination of toluene at 65—100°C (37). At lower temperatures the amount of ring-chlorinated by-products is increased. The chlorination is usually carried to no more than about 50% toluene conversion in order to minimize the amount of benzal chloride formed. Overall yield based on toluene is more than 90%. Various materials, including phosphoms pentachloride, have been reported to catalyze the side-chain chlorination. These compounds and others such as amides also reduce ring chlorination by complexing metallic impurities (38). [Pg.59]

Benzyl chloride undergoes self-condensation relatively easily at high temperatures or in the presence of trace metallic impurities. The risk of decomposition during distillation is reduced by the use of various additives including lactams (43) and amines (44,45). Lime, sodium carbonate, and triethylamine are used as stabilizers during storage and shipment. Other soluble organic compounds that are reported to function as stabilizers in low concentration include DMF (46), arylamines (47), and triphenylphosphine (48). [Pg.60]

Metal impurities can be determined qualitatively and quantitatively by atomic absorption spectroscopy and the required purification procedures can be formulated. Metal impurities in organic compounds are usually in the form of ionic salts or complexes with organic compounds and very rarely in the form of free metal. If they are present in the latter form then they can be removed by crystallising the organic compound (whereby the insoluble metal can be removed by filtration), or by distillation in which case the metal remains behind with the residue in the distilling flask. If the impurities are in the ionic or complex forms, then extraction of the organic compound in a suitable organic solvent with aqueous acidic or alkaline solutions will reduce their concentration to acceptable levels. [Pg.53]

Pseudomorphism has less desirable consequences, and usually means are sought to suppress it. If the substrate has been scratched, ground or abrasively polished, or if it has been cold rolled or cold formed, the surface is left in a peculiar state. Cold working reduces the surface grain size, and produces deformed, shattered and partly reoriented metal. It may produce microcrevices between the deformed grains, and, with some processes, non-metallic impurities and oxides are embedded in the surface. The disturbed state of the substrate is copied by a pseudomorphic electrodeposit with several consequences (Fig. 12.7). One is aesthetic it has often been noted that almost invisible abrasion of the substrate develops as more prominent... [Pg.358]

The main metallic impurities that contaminate the primary powder, due to chemical corrosion of the retort and other metal parts of the reactor, are Fe, Ni and Cr. From this point of view, reactors that are equipped with larger retorts usually provide better purity due to a relatively low ratio between the internal surface of the wet metal parts of the reactor and the total volume of the melt. Recent investigations on the decreasing of Fe, Ni and Cr impurities during the sodium reduction process were performed by Li [591]. It was shown that one of the most effective ways to reduce contamination of the product is to reduce the duration of time K2TaF7 is present in the reactor. [Pg.333]

This PUCI3 also acts as a salt-phase buffer to prevent dissolution of trace impurities in the metal feed by forcing the anode equilibrium to favor production (retention) of trace impurities as metals, instead of permitting oxidation of the impurities to ions. Metallic impurities in the feed fall into two classes, those more electropositive and those less electropositive than plutonium. Since the cell is operated at temperatures above the melting point of all the feed components, and both the liquid anode and salt are well mixed by a mechanical stirrer, chemical equlibrium is established between all impurities and the plutonium in the salt even before current is applied to the cell. Thus, impurities more electropositive than the liquid plutonium anode will be oxidized by Pu+3 and be taken up by the salt phase, while impurities in the electrolyte salt less electropositive than plutonium will be reduced by plutonium metal and be collected in the anode. [Pg.395]

Multiple reciystallizations (three or more) from the molten metal give specimens free of the other alkaline-earth metals and a final assay of 99.9999% Combined vacuum distillation and zone melting (five passes at 880-900°C under He) reduces the alkaline-earth metal impurity levels below the detection limits. ... [Pg.379]

Iron(II) sulfate in industrial scale is mostly produced in the pickling process as a by-product of the steel industry. It is obtained when the surface of steel is cleaned with dilute sulfuric acid to remove metal impurities. In the laboratory iron(II) sulfate heptahydrate may be prepared by dissolving iron in dilute sulfuric acid in a reducing atmosphere, followed by crystallization ... [Pg.436]


See other pages where Reduce metal impurities is mentioned: [Pg.32]    [Pg.36]    [Pg.321]    [Pg.170]    [Pg.174]    [Pg.22]    [Pg.358]    [Pg.122]    [Pg.124]    [Pg.383]    [Pg.52]    [Pg.60]    [Pg.158]    [Pg.91]    [Pg.366]    [Pg.584]    [Pg.81]    [Pg.428]    [Pg.441]    [Pg.534]    [Pg.720]    [Pg.331]    [Pg.181]    [Pg.190]    [Pg.147]    [Pg.60]    [Pg.300]    [Pg.255]    [Pg.372]    [Pg.606]    [Pg.574]    [Pg.705]    [Pg.42]    [Pg.289]    [Pg.17]    [Pg.92]    [Pg.206]   


SEARCH



Impurity metallic

Reducing Metals

© 2024 chempedia.info