Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Redox Potential Oxygen

Soil or sediment pH and redox potential Oxygen flux and the thickness of aerobic layer Presence of oxidants with higher reduction potentials Flux of soluble Fe(II) and Mn(ll)... [Pg.429]

Ozone is very much more reactive than oxygen and is a powerful oxidising agent especially in acid solution (the redox potential varies with conditions but can be as high as + 2.0 V). Some examples are 1. the conversion of black lead(ll) sulphide to white lead(II) sulphate (an example of oxidation by addition of oxygen) ... [Pg.264]

In an oversimplified way, it may be stated that acids of the volcanoes have reacted with the bases of the rocks the compositions of the ocean (which is at the fkst end pokit (pH = 8) of the titration of a strong acid with a carbonate) and the atmosphere (which with its 2 = 10 atm atm is nearly ki equdibrium with the ocean) reflect the proton balance of reaction 1. Oxidation and reduction are accompanied by proton release and proton consumption, respectively. In order to maintain charge balance, the production of electrons, e, must eventually be balanced by the production of. The redox potential of the steady-state system is given by the partial pressure of oxygen (0.2 atm). Furthermore, the dissolution of rocks and the precipitation of minerals are accompanied by consumption and release, respectively. [Pg.212]

J-C Marchon, T Mashiko, CA Reed. How does nature control cytochrome redox potentials In C Ho, ed. Electron Transport and Oxygen Utilization. New York Elsevier North-Holland, 1982, pp 67-72. [Pg.414]

Anaerobic organisOTj—Flourish in the absence of oxygen in environment with low redox potential. [Pg.1297]

In view of the importance of the hydronium ion, HjO, and dissolved oxygen as electron acceptors in corrosion reactions, some values of the redox potentials E and chemical potentials n for the equilibria... [Pg.60]

Dissolved oxygen has a higher redox potential than the hydrogen ion at all values of pH, i.e. it is a more powerful oxidant. [Pg.60]

For example, the redox potential of a system containing oxide ions and oxygen could be expressed as ... [Pg.436]

Corrosion or mixed potentials (a) Active corrosion in acid solutions (b) Passive metal in acid solutions Potential dependent on the redox potential of the solution and the kinetics of the anodic and cathodic reactions. Potential dependent on the kinetics of the h.e.r. on the bare metal surface. Potential is that of an oxide-hlmed metal, and is dependent on the redox potential of the solution. Zn in HCI Stainless steel in oxygenated H2SO4... [Pg.1242]

Chelant corrosion (chelant attack) Complexing of soluble Fe, Cu, and CU alloy ions. (Excess chelant and oxygen leads to change in redox potential and corrosion develops.)... [Pg.272]

When isolated mitochondria are incubated with substrate, Pj, and oxygen, in the absence of ADP (state 4, Chance and Williams, 1956), the proton gradient is not dissipated and electron transport is slow since the redox potential is balanced by the PMF. Addition of ADP (State 3, Chance and Williams, 1956) stimulates... [Pg.124]

With its oxygen functionality, graphite oxide has chemical properties more akin to those of layered disulfides or sheet silicates than to those of graphite (Gi, T1,A2). Many studies have been of an extremely applied nature the possibility of fluorination (LI, N1), redox potentials in the presence of hydrogen peroxide (V2), the apparent density (L2), the adsorption isotherms with nitrogen (L3), and the diffusion of Cs in graphite oxide (R2). [Pg.283]

In addition to effects on the concentration of anions, the redox potential can affect the oxidation state and solubility of the metal ion directly. The most important examples of this are the dissolution of iron and manganese under reducing conditions. The oxidized forms of these elements (Fe(III) and Mn(IV)) form very insoluble oxides and hydroxides, while the reduced forms (Fe(II) and Mn(II)) are orders of magnitude more soluble (in the absence of S( — II)). The oxidation or reduction of the metals, which can occur fairly rapidly at oxic-anoxic interfaces, has an important "domino" effect on the distribution of many other metals in the system due to the importance of iron and manganese oxides in adsorption reactions. In an interesting example of this, it has been suggested that arsenate accumulates in the upper, oxidized layers of some sediments by diffusion of As(III), Fe(II), and Mn(II) from the deeper, reduced zones. In the aerobic zone, the cations are oxidized by oxygen, and precipitate. The solids can then oxidize, as As(III) to As(V), which is subsequently immobilized by sorption onto other Fe or Mn oxyhydroxide particles (Takamatsu et al, 1985). [Pg.390]

Results from other studies support the rapid degradation of methyl parathion in soils with a high water (i.e., low oxygen) content (Adhya et al. 1981, 1987 Brahmaprakash et al. 1987). Experiments in flooded and nonflooded soils showed that the redox potential affected both the rate of degradation and the transformation products of methyl parathion (Adhya et al. 1981, 1987). Transformation to volatile products was suggested by Brahmaprakash et al. (1987) as the reason that significant amounts of " C from labeled methyl parathion could not be accounted for, especially in flooded soils. [Pg.155]

Electrochemical studies performed in the 7 x Cys-Aspl4 D. afri-canus Fdlll indicate that the reduced [3Fe-4S] center can react rapidly with Fe to form a [4Fe-4S] core that must include noncysteinyl coordination (101). The carboxylate side chain of Asp 14 was proposed as the most likely candidate, since this amino acid occupies the cysteine position in the typical sequence of a 8Fe protein as indicated before. The novel [4Fe-4S] cluster with mixed S and O coordination has a midpoint redox potential of 400 mV (88). This novel coordinated state with an oxygen coordination to the iron-sulfur core is a plausible model for a [4Fe-4S] core showing unusual spin states present in complex proteins (113, 114). [Pg.377]


See other pages where Redox Potential Oxygen is mentioned: [Pg.203]    [Pg.191]    [Pg.123]    [Pg.278]    [Pg.203]    [Pg.191]    [Pg.123]    [Pg.278]    [Pg.368]    [Pg.194]    [Pg.39]    [Pg.247]    [Pg.390]    [Pg.113]    [Pg.2133]    [Pg.624]    [Pg.63]    [Pg.63]    [Pg.69]    [Pg.177]    [Pg.442]    [Pg.868]    [Pg.353]    [Pg.69]    [Pg.70]    [Pg.160]    [Pg.301]    [Pg.124]    [Pg.143]    [Pg.432]    [Pg.143]    [Pg.338]    [Pg.348]    [Pg.458]    [Pg.92]    [Pg.93]    [Pg.363]    [Pg.312]   
See also in sourсe #XX -- [ Pg.246 ]




SEARCH



Potential oxygen

Redox oxygen

Redox potentials

© 2024 chempedia.info