Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Water redox couple.

The cure reaction of structural acrylic adhesives can be started by any of a great number of redox reactions. One commonly used redox couple is the reaction of benzoyl peroxide (BPO) with tertiary aromatic amines. Pure BPO is hazardous when dry [39]. It is susceptible to explosion from shock, friction or heat, and has an autoignition temperature of 79°C. Water is a very effective stabilizer for BPO, and so the initiator is often available as a paste or a moist solid [40], The... [Pg.832]

These measurements indicate that it is not possible to identify a single value of pe surrounding the O2/H2S interface in the environment. Redox couples do not respond to the pe of the environment with the same lability as hydrogen ion donors and acceptors. There is no clear electron buffer capacity other than the most general states of "oxygen containing" or "H2S containing." The reason for the vast differences in pec in the oxic waters is the slow oxidation kinetics of the reduced forms of the redox couples. The reduced species for which the kinetics of oxidation by O2 has been most widely studied is Mn. This oxidation reaction... [Pg.432]

Fig. 5.14 Inoue et al. carried out a systematic study of the photocatalytic reduction of CO2 by different semiconductor powders in aqueous suspensions. Shown here is the energy correlation between semiconductor catalysts and redox couples in water, as presented in their paper. In principle, the solution species with more positive redox potential with respect to the conduction band level of the semiconductor is preferably reduced at the electrode. Photoexcited electrons in the more negative conduction band certainly have greater ability to reduce CO2 in the solution. (Reproduced from [240])... Fig. 5.14 Inoue et al. carried out a systematic study of the photocatalytic reduction of CO2 by different semiconductor powders in aqueous suspensions. Shown here is the energy correlation between semiconductor catalysts and redox couples in water, as presented in their paper. In principle, the solution species with more positive redox potential with respect to the conduction band level of the semiconductor is preferably reduced at the electrode. Photoexcited electrons in the more negative conduction band certainly have greater ability to reduce CO2 in the solution. (Reproduced from [240])...
Heterogeneous electron reactions at liquid liquid interfaces occur in many chemical and biological systems. The interfaces between two immiscible solutions in water-nitrobenzene and water 1,2-dichloroethane are broadly used for modeling studies of kinetics of electron transfer between redox couples present in both media. The basic scheme of such a reaction is... [Pg.28]

This reaction has been associated with anomalous voltammetric responses during ET reactions in the presence of aqueous redox couples [71,84]. However, as indicated in Fig. 3, the redox potential of TPB is considerably more positive than Fc in DCE, therefore the reaction in Eq. (20) must involve a complex interfacial catalytic mechanism to indeed take place. On the other hand. Ding et al. have studied the oxidation of 1,1-dimethylferrocene (DMFc) and the reduction of TCNQ by Fe(CN)g at the water-... [Pg.199]

FIG. 11 General mechanism for the heterogeneous photoreduction of a species Q located in the organic phase by the water-soluble sensitizer S. The electron-transfer step is in competition with the decay of the excited state, while a second competition involved the separation of the geminate ion-pair and back electron transfer. The latter process can be further affected by the presence of a redox couple able to regenerate the initial ground of the dye. This process is commonly referred to as supersensitization. (Reprinted with permission from Ref. 166. Copyright 1999 American Chemical Society.)... [Pg.212]

Quinn et al. studied ET at micro-ITIES supported by micropipettes or microholes [16]. The studied systems involved ferri/ferrocyanide redox couple in aqueous phase and ferrocene, dimethylferrocene, or TCNQ in either DCE or o-nitrophenyl octyl ether. Sigmoidal, steady-state voltammograms were obtained for ET at the water-DCE interface supported at a micropipette. The semilogarithmic plot of E versus log[(/(j — /)//] was... [Pg.396]

The electrochemical cell can again be of the regenerative or electrosynthetic type, as with the photogalvanic cells described above. In the regenerative photovoltaic cell, the electron donor (D) and acceptor (A) (see Fig. 5.62) are two redox forms of one reversible redox couple, e.g. Fe(CN)6-/4 , I2/I , Br2/Br , S2 /S2, etc. the cell reaction is cyclic (AG = 0, cf. Eq. (5.10.24) since =A and D = A ). On the other hand, in the electrosynthetic cell, the half-cell reactions are irreversible and the products (D+ and A ) accumulate in the electrolyte. The most carefully studied reaction of this type is photoelectrolysis of water (D+ = 02 and A = H2)- Other photoelectrosynthetic studies include the preparation of S2O8-, the reduction of C02 to formic acid, N2 to NH3, etc. [Pg.413]

Five-coordinate Ni111 complexes (89) have been prepared by oxidation of the square planar Ni11 precursor complexes [Ni(L)X] with either X2 or CuX2, and the crystal structure of the iodo derivative has been determined. The geometry at Ni is best described as square pyramidal, with the Ni atom displaced approximately 0.34 A out of the basal plane towards the apical I atom. EPR confirms the Ni111 oxidation state, in which the unpaired electron of the low-spin d1 system is situated in the dz2 orbital.308,309 In aqueous solution full dissociation of both X anions occurs, while in acetone solution dissociation is not significant. The redox couple [Nin NCN (H20)]+/ [Ni111 NCN (H20)ra]2+ in water is +0.14V (vs. SCE). [Pg.273]

Water is involved in most of the photodecomposition reactions. Hence, nonaqueous electrolytes such as methanol, ethanol, N,N-d i methyl forma mide, acetonitrile, propylene carbonate, ethylene glycol, tetrahydrofuran, nitromethane, benzonitrile, and molten salts such as A1C13-butyl pyridium chloride are chosen. The efficiency of early cells prepared with nonaqueous solvents such as methanol and acetonitrile were low because of the high resistivity of the electrolyte, limited solubility of the redox species, and poor bulk and surface properties of the semiconductor. Recently, reasonably efficient and fairly stable cells have been prepared with nonaqueous electrolytes with a proper design of the electrolyte redox couple and by careful control of the material and surface properties [7], Results with single-crystal semiconductor electrodes can be obtained from table 2 in Ref. 15. Unfortunately, the efficiencies and stabilities achieved cannot justify the use of singlecrystal materials. Table 2 in Ref. 15 summarizes the results of liquid junction solar cells prepared with polycrystalline and thin-film semiconductors [15]. As can be seen the efficiencies are fair. Thin films provide several advantages over bulk materials. Despite these possibilities, the actual efficiencies of solid-state polycrystalline thin-film PV solar cells exceed those obtained with electrochemical PV cells [22,23]. [Pg.233]

Many natural waters, including most waters at low temperature, do not achieve redox equilibrium (e.g., Lindberg and Runnells, 1984 see Chapter 7). In this case, no single value of pe or Eh can be used to represent the redox state. Instead, there is a distinct value for each redox couple in the system. Applying the Nernst equation to Reaction 3.46 gives a pe or Eh representing the hydrolysis of water. Under disequilibrium conditions, this value differs from those calculated from reactions such as,... [Pg.49]

Complicating matters further is the fact that the platinum electrode, the standard tool for measuring Eh directly, does not respond to some of the most important redox couples in geochemical systems. The electrode, for example, responds incorrectly or not at all to the couples SO -HS-, O2-H2O, CO2-CH4, NOJ-N2, and N2-NH4 (Stumm and Morgan, 1996 Hostettler, 1984). In a laboratory experiment, Runnells and Lindberg (1990) prepared solutions with differing ratios of selenium in the Se4+ and Se6+ oxidation states. They found that even under controlled conditions the platinum electrode was completely insensitive to the selenium composition. The meaning of an Eh measurement from a natural water, therefore, may be difficult or impossible to determine (e.g., Westall, 2002). [Pg.103]

If the flow of oxygen falters, e.g. when the surface of the cathode is covered with water, then no gaseous 02 can reach the platinum outer layer. In response, firstly no electrons are consumed to yield oxide ions, and secondly the right-hand side of the cell floods with the excess protons that have traversed the polymer membrane and not yet reacted with O2-. Furthermore, without the reduction of oxygen, there is no redox couple at the cathode. The fuel cell ceases to operate, and can produce no more electrical energy. [Pg.290]

As Fig. 9.2 shows, the Fe(III)/Fe(II) redox couple can adjust with appropriate ligands to any redox potential within the stability of water. The principles exemplified here are of course also applicable to other redox systems. [Pg.311]


See other pages where Water redox couple. is mentioned: [Pg.143]    [Pg.432]    [Pg.210]    [Pg.211]    [Pg.224]    [Pg.273]    [Pg.282]    [Pg.100]    [Pg.192]    [Pg.193]    [Pg.200]    [Pg.202]    [Pg.220]    [Pg.315]    [Pg.322]    [Pg.1219]    [Pg.351]    [Pg.254]    [Pg.755]    [Pg.42]    [Pg.558]    [Pg.565]    [Pg.565]    [Pg.567]    [Pg.569]    [Pg.569]    [Pg.585]    [Pg.265]    [Pg.23]    [Pg.50]    [Pg.129]    [Pg.202]    [Pg.311]    [Pg.331]    [Pg.355]    [Pg.366]   
See also in sourсe #XX -- [ Pg.59 , Pg.95 , Pg.267 ]




SEARCH



Redox couples

Redox coupling

Water redox

© 2024 chempedia.info