Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Recovery rate Residence time

The problems of monomer recovery, reaction medium viscosity, and control of reaction heat are effectively dealt with by the process design of Montedison Fibre (53). This process produces polymer of exceptionally high density, so although the polymer is stiU swollen with monomer, the medium viscosity remains low because the amount of monomer absorbed in the porous areas of the polymer particles is greatly reduced. The process is carried out in a CSTR with a residence time, such that the product k jd x. Q is greater than or equal to 1. is the initiator decomposition rate constant. This condition controls the autocatalytic nature of the reaction because the catalyst and residence time combination assures that the catalyst is almost totally expended in the reactor. [Pg.280]

Flotation process kinetics determine the residence time, the average time a given particle stays in the flotation pulp from the instant it enters the ceU until it exits. One way to study flotation kinetics is to record flotation recoveries as a function of time under a given set of conditions such as pulp pH, coUector concentration, particle size, etc. The data allow the derivation of an expression that describes the rate of the process. [Pg.49]

Acetaldehyde can be used as an oxidation-promoter in place of bromine. The absence of bromine means that titanium metallurgy is not required. Eastman Chemical Co. has used such a process, with cobalt as the only catalyst metal. In that process, acetaldehyde is converted to acetic acid at the rate of 0.55—1.1 kg/kg of terephthahc acid produced. The acetic acid is recycled as the solvent and can be isolated as a by-product. Reaction temperatures can be low, 120—140°C, and residence times tend to be high, with values of two hours or more (55). Recovery of dry terephthahc acid follows steps similar to those in the Amoco process. Eastman has abandoned this process in favor of a bromine promoter (56). Another oxidation promoter which has been used is paraldehyde (57), employed by Toray Industries. This leads to the coproduction of acetic acid. 2-Butanone has been used by Mobil Chemical Co. (58). [Pg.488]

Black Liquor Soap Recovery. Black Hquor soap consists of the sodium salts of the resin and fatty acids with small amounts of unsaponifiables. The soap is most easily separated from the black Hquor by skimming at an intermediate stage, when the black Hquor is evaporated to 25% soHds (7). At this soHds level, the soap rises in the skimmer at a rate of 0.76 m/h. At higher soHds concentrations, the tall oil soap is less soluble, but higher viscosity lowers the soap rise rate and increases the necessary residence times in the soap skimmer beyond 3—4 hours. The time required for soap recovery can be reduced by installing baffles, by the use of chemical flocculants (8,9), and by air injection into the suction side of the soap skimmer feed pump. Soap density is controUed by the rate of air injection. Optimum results (70% skimmer efficiency) are obtained at a soap density of 0.84 kg/L (7 lb/gal). This soap has a minimum residual black Hquor content of 15% (10—12). [Pg.305]

Dekker et al. [170] studied the extraction process of a-amylase in a TOMAC/isooctane reverse micellar system in terms of the distribution coefficients, mass transfer coefficient, inactivation rate constants, phase ratio, and residence time during the forward and backward extractions. They derived different equations for the concentration of active enzyme in all phases as a function of time. It was also shown that the inactivation took place predominantly in the first aqueous phase due to complex formation between enzyme and surfactant. In order to minimize the extent of enzyme inactivation, the steady state enzyme concentration should be kept as low as possible in the first aqueous phase. This can be achieved by a high mass transfer rate and a high distribution coefficient of the enzyme between reverse micellar and aqueous phases. The effect of mass transfer coefficient during forward extraction on the recovery of a-amylase was simulated for two values of the distribution coefficient. These model predictions were verified experimentally by changing the distribution coefficient (by adding... [Pg.141]

One method of preventing precipitation is to operate the reverse osmosis unit at a recovery which will not concentrate the feed/reject stream to the compound saturation level. Another method of preventing precipitation is to add a threshold inhibitor, such as sodium hexametaphosphate, certain polyacrylates, organophosphates or phosphonates, to the feedwater. The threshold inhibitors are added at the rate of 1 to 5 mg/fi of feedwater, and they serve to disrupt the formation of a crystalline precipitate during the residence time of the feedwater in the reverse osmosis unit. In doing this, they broaden the solubility limits of the sparingly soluble compounds. [Pg.285]

If maximum product size is desired, the process stream flow is parallel, with a fresh feed and slurry discharge to product recovery equipment from each crystallizer. Cascaded product flow is avoided because flow through a series of tanks narrows the residence time distribution and the CSD and reduces the mass mean size by reducing the number of larger crystals in the distribution tail. This tail represents the major mass-weighted fraction. Population models have been solved to verify this effect, assuming an equal nucleation rate in each stage (Randolph and Larson 1988). The actual mean in industrial practice is lower because transfer of... [Pg.213]


See other pages where Recovery rate Residence time is mentioned: [Pg.422]    [Pg.412]    [Pg.1810]    [Pg.95]    [Pg.324]    [Pg.64]    [Pg.374]    [Pg.88]    [Pg.443]    [Pg.334]    [Pg.412]    [Pg.362]    [Pg.36]    [Pg.332]    [Pg.981]    [Pg.179]    [Pg.30]    [Pg.33]    [Pg.1570]    [Pg.362]    [Pg.362]    [Pg.362]    [Pg.949]    [Pg.213]    [Pg.319]    [Pg.73]    [Pg.456]    [Pg.291]    [Pg.637]    [Pg.572]    [Pg.878]    [Pg.1814]    [Pg.99]    [Pg.489]    [Pg.207]    [Pg.305]    [Pg.305]   


SEARCH



Recovery rate

Recovery time

© 2024 chempedia.info