Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Rearrangement of epoxides to allylic

BASE-INDUCED REARRANGEMENT OF EPOXIDES TO ALLYLIC ALCOHOLS trans-Pinocarveol,... [Pg.55]

TT-ALLYLNICKEL HALIDES METHALLYLBENZENE, 52, 115 Rearrangement of epoxides to allylic alcohols, 53, 17 Reduction, by controlled-po-tential electrolysis, 52, 22 by lithium aluminum hydride of exo-3,4-dichlorobicyclo [3.2.l]oct-2-ene to 3-chlorobicyclo[3.2.l]oct-2-ene, 51, 61... [Pg.135]

Enantioselective deprotonation.2 The rearrangement of epoxides to allylic alcohols by lithium dialkylamides involves removal of the proton syn to the oxygen.3 When a chiral lithium amide is used with cyclohexene oxide, the optical yield of the resulting allylic alcohol is 3-31%, the highest yield being obtained with 1. [Pg.245]

Enantioselective rearrangement of epoxides to allylic alcohols 91TA1. Photochemical reactions of glycidyl esters 92MI11. [Pg.316]

II. CHIRAL LITHIUM AMIDES IN ASYMMETRIC SYNTHESIS A. Rearrangement of Epoxides to Allylic Alcohols... [Pg.412]

The (3-elimination of epoxides to allylic alcohols on treatment with strong base is a well studied reaction [la]. Metalated epoxides can also rearrange to allylic alcohols via (3-C-H insertion, but this is not a synthetically useful process since it is usually accompanied by competing a-C-H insertion, resulting in ketone enolates. In contrast, aziridine 277 gave allylic amine 279 on treatment with s-BuLi/(-)-spar-teine (Scheme 5.71) [97]. By analogy with what is known about reactions of epoxides with organolithiums, this presumably proceeds via the a-metalated aziridine 278 [101]. [Pg.178]

Isomerization of epoxides to allylic alcoholsThis rearrangement has been effected with strong bases and various Lewis acids. Enantioselective rearrangement to optically active allylic alcohols can be effected with catalytic amounts of vitamin B, at 25°. Thus cyclopentene oxide rearranges to (R)-2-cyclopentene-l-ol in 65% ee. The rearrangement of the as-2-butene oxide to (R)-3-butene-2-ol in 26% ee is more typical. [Pg.365]

The well-known base-mediated rearrangement of epoxides into allylic alcohols was first reported as an enantioselective process using a chiral base in 1980. Since then, the reaction has received much attention, mostly due to the significance of chiral allylic alcohols in organic synthesis. Major breakthroughs in the area include the use of a substoichiometric amount of chiral base and the development of chiral bases for a true catalytic reaction protocol. Andersson and co-workers have reviewed this area from 1980 to 2001, with emphasis on the period 1997-2001 <2002CSR223>. [Pg.266]

Titanium-IV compounds with their Lewis acid activity may catalyze an interfering rearrangement of the starting allylic alcohol or the epoxy alcohol formed. In order to avoid such side-reactions, the epoxidation is usually carried out at room temperature or below. [Pg.256]

Isomerization of primary allylic alcohols proceeds in dichloromethane at 25 °C in the presence of a catalyst prepared in situ from VO(acac)2 or Mo02(acac)2 and BTSP to give tertiary isomers in good yields. This is in sharp contrast to the well-known Sharpless epoxidation of allylic alcohols. The catalysts are also effective for rearrangements of secondary-tertiary allylic alcohols. The isomerization of an allenyl allylic... [Pg.789]

Rearrangement of 1,2-disubstituted compounds Diethoxytriphenylphosphorane, 109 epoxides to allylic alcohols Methylmagnesium N-cyclohexylisopro-pylamide, 189... [Pg.371]

The application of the chiral base 10b has been extended to the rearrangement of epoxides cis- and trans-5 to give allylic alcohols in 97% and 68% ee, respectively (Scheme 7). [Pg.414]

While several stoichiometric chiral lithium amide bases effect the rearrangement of raeso-epoxides to allylic alcohols [1], few examples using catalytic amounts of base have been reported. Asami applied a pro line-derived ligand to the enantioselective deprotonation of cyclohexene oxide to afford 2-cyclohexen-... [Pg.1246]

Propylene oxide-based glycerol can be produced by rearrangement of propylene oxide [75-56-9] (qv) to allyl alcohol over triUthium phosphate catalyst at 200—250°C (yield 80—85%) (4), followed by any of the appropriate steps shown in Figure 1. The specific route commercially employed is peracetic acid epoxidation of allyl alcohol to glycidol followed by hydrolysis to glycerol (5). The newest international synthesis plants employ this basic scheme. [Pg.347]

Hydroxyl groups are stable to peracids, but oxidation of an allylic alcohol during an attempted epoxidation reaction has been reported." The di-hydroxyacetone side chain is usually protected during the peracid reaction, either by acetylation or by formation of a bismethylenedioxy derivative. To obtain high yields of epoxides it is essential to avoid high reaction temperatures and a strongly acidic medium. The products of epoxidation of enol acetates are especially sensitive to heat or acid and can easily rearrange to keto acetates. [Pg.10]

The reductive elimination of a variety of )3-substituted sulfones for the preparation of di-and tri-substituted olefins (e.g. 75 to 76) and the use of allyl sulfones as synthetic equivalents of the allyl dianion CH=CH—CHj , has prompted considerable interest in the [1,3]rearrangements of allylic sulfones ". Kocienski has thus reported that while epoxidation of allylic sulfone 74 with MCPBA in CH2CI2 at room temperature afforded the expected product 75, epoxidation in the presence of two equivalents of NaHCOj afforded the isomeric j ,y-epoxysulfone 77. Similar results were obtained with other a-mono- or di-substituted sulfones. On the other hand, the reaction of y-substituted allylic sulfones results in the isomerization of the double bond, only. The following addition-elimination free radical chain mechanism has been suggested (equations 45, 46). In a closely related and simultaneously published investigation, Whitham and coworkers reported the 1,3-rearrangement of a number of acyclic and cyclic allylic p-tolyl sulfones on treatment with either benzoyl peroxide in CCI4 under reflux or with... [Pg.688]


See other pages where Rearrangement of epoxides to allylic is mentioned: [Pg.302]    [Pg.411]    [Pg.333]    [Pg.229]    [Pg.146]    [Pg.77]    [Pg.18]    [Pg.302]    [Pg.411]    [Pg.333]    [Pg.229]    [Pg.146]    [Pg.77]    [Pg.18]    [Pg.20]    [Pg.252]    [Pg.88]    [Pg.11]    [Pg.218]    [Pg.22]    [Pg.176]    [Pg.404]    [Pg.573]    [Pg.103]    [Pg.61]    [Pg.243]    [Pg.206]    [Pg.88]    [Pg.393]    [Pg.611]    [Pg.590]    [Pg.688]    [Pg.1127]    [Pg.192]   


SEARCH



Allyl rearrangement

Allylic epoxidations

Allylic epoxide

Allylic epoxides

Allylic rearrangement

Epoxidation rearrangement

Epoxides allylation

Epoxides rearrangements

Rearrangement of epoxides to allylic alcohols

Rearrangements Epoxide

To epoxide

© 2024 chempedia.info