Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reactor endothermic reactions

Temperature control. Let us now consider temperature control of the reactor. In the first instance, adiabatic operation of the reactor should be considered, since this leads to the simplest and cheapest reactor design. If adiabatic operation produces an unacceptable rise in temperature for exothermic reactions or an unacceptable fall in temperature for endothermic reactions, this can be dealt with in a number of ways ... [Pg.42]

This is an endothermic reaction accompanied by an increase in the number of moles. High conversion is favored by high temperature and low pressure. The reduction in pressure is achieved in practice by the use of superheated steam as a diluent and by operating the reactor below atmospheric pressure. The steam in this case fulfills a dual purpose by also providing heat for the reaction. [Pg.44]

Adiabatic operation. If adiabatic operation leads to an acceptable temperature rise for exothermic reactors or an acceptable fall for endothermic reactors, then this is the option normally chosen. If this is the case, then the feed stream to the reactor requires heating and the efiluent stream requires cooling. The heat integration characteristics are thus a cold stream (the reactor feed) and a hot stream (the reactor efiluent). The heat of reaction appears as elevated temperature of the efiluent stream in the case of exothermic reaction or reduced temperature in the case of endothermic reaction. [Pg.325]

If the reactor can be matched with other process streams (which is unlikely), then the reactor profile should be included in the heat integration problem. This would be a hot stream in the case of an exothermic reaction or a cold stream in the case of an endothermic reaction. [Pg.327]

Fired reactors contain tubes or coils in which an endothermic reaction within a stream of reac tants occurs. Examples include steam/ hydrocarbon reformers, catalvst-filled tubes in a combustion chamber pyrolyzers, coils in which alkanes (from ethane to gas oil) are cracked to olefins in both types of reac tor the temperature is maintained up to 1172 K (1650°F). [Pg.2402]

As the name implies, these reactors are mostly used for the study of exothermic reactions, although they can be applied to endothermic reactions, too. Figure 2.2.6 shows a liquid-jacketed tubular reactor (Berty 1989). [Pg.40]

In general, for basic petrochemicals that are not much more expensive than fuel (energy) itself, the energy recovery or use is important. Therefore, exothermic reactions should be executed at the highest temperature and endothermic reaction at the lowest, within the range that the reaction permits. In addition, reactors should not be optimized only for their own performance, but also for the optimum economy of the full synthesis loop or the full technology. [Pg.164]

Heat exchanger-like, multi-tube reactors are used for both exothermic and endothermic reactions. Some have as much as 10,000 tubes in a shell installed between tube sheets on both ends. The tubes are filled with catalyst. The larger reactors are sensitive to transient thermal stresses that can develop during startup, thermal runaways and emergency shut downs. [Pg.174]

The Powerformer reaction absorbs heat it is largely an endothermic reaction. This heat of reaction is in the order of 200-350 BTU/pound, depending on the type of feed. Since the individual Powerforming fixed bed reactors operate... [Pg.52]

In the Monsanto/Lummus Crest process (Figure 10-3), fresh ethylbenzene with recycled unconverted ethylbenzene are mixed with superheated steam. The steam acts as a heating medium and as a diluent. The endothermic reaction is carried out in multiple radial bed reactors filled with proprietary catalysts. Radial beds minimize pressure drops across the reactor. A simulation and optimization of styrene plant based on the Lummus Monsanto process has been done by Sundaram et al. Yields could be predicted, and with the help of an optimizer, the best operating conditions can be found. Figure 10-4 shows the effect of steam-to-EB ratio, temperature, and pressure on the equilibrium conversion of ethylbenzene. Alternative routes for producing styrene have been sought. One approach is to dimerize butadiene to 4-vinyl-1-cyclohexene, followed by catalytic dehydrogenation to styrene ... [Pg.267]

FIGURE 5.4 Concentration profiles for an endothermic reaction in an adiabatic reactor. [Pg.166]

TABLE 6.3 Comparison of Ideal Reactors for Consecutive, Endothermic Reactions... [Pg.199]

As expected, heat exchanged per unit of volume in the Shimtec reactor is better than the one in batch reactors (15-200 times higher) and operation periods are much smaller than in a semibatch reactor. These characteristics allow the implementation of exo- or endothermic reactions at extreme operating temperatures or concentrations while reducing needs in purifying and separating processes and thus in raw materials. Indeed, since supply or removal of heat is enhanced, semibatch mode or dilutions become useless and therefore, there is an increase in selectivity and yield. [Pg.282]

On the other hand, RPBs suffer from poor heat transfer possibilities. Heat input could theoretically be achieved by use of eddy currents, microwaves, or sonic energy, and thus endothermic reactions are, in principle, possible. The heat removal is more problematic and exothermic reactions must be conducted adiabatically within the rotor. Alternating packing and heat transfer plates could perhaps be an option, although it would greatly increase the complexity and the price of the reactor. [Pg.301]

In order to exemplify the potential of micro-channel reactors for thermal control, consider the oxidation of citraconic anhydride, which, for a specific catalyst material, has a pseudo-homogeneous reaction rate of 1.62 s at a temperature of 300 °C, corresponding to a reaction time-scale of 0.61 s. In a micro channel of 300 pm diameter filled with a mixture composed of N2/02/anhydride (79.9 20 0.1), the characteristic time-scale for heat exchange is 1.4 lO" s. In spite of an adiabatic temperature rise of 60 K related to such a reaction, the temperature increases by less than 0.5 K in the micro channel. Examples such as this show that micro reactors allow one to define temperature conditions very precisely due to fast removal and, in the case of endothermic reactions, addition of heat. On the one hand, this results in an increase in process safety, as discussed above. On the other hand, it allows a better definition of reaction conditions than with macroscopic equipment, thus allowing for a higher selectivity in chemical processes. [Pg.39]

A constant volume batch reactor is used to convert reactant. A, to product, B, via an endothermic reaction, with simple stoichiometry, A —> B. The reaction kinetics are second-order with respect to A, thus... [Pg.143]

Figure 6.4a shows the behavior of an endothermic reaction as a plot of equilibrium conversion against temperature. The plot can be obtained from values of AG° over a range of temperatures and the equilibrium conversion calculated as illustrated in Examples 6.1 and 6.2. If it is assumed that the reactor is operated adiabatically, a heat balance can be carried out to show the change in temperature with reaction conversion. If the mean molar heat capacity of the reactants and products are assumed constant, then for a given starting temperature for the reaction Ttn, the temperature of the reaction mixture will be proportional to the reactor conversion X for adiabatic operation, Figure 6.4a. As the conversion increases, the temperature decreases because of the reaction endotherm. If the reaction could proceed as far as equilibrium, then it would reach the equilibrium temperature TE. Figure 6.4b shows how equilibrium conversion can be increased by dividing the reaction into stages and reheating the reactants... Figure 6.4a shows the behavior of an endothermic reaction as a plot of equilibrium conversion against temperature. The plot can be obtained from values of AG° over a range of temperatures and the equilibrium conversion calculated as illustrated in Examples 6.1 and 6.2. If it is assumed that the reactor is operated adiabatically, a heat balance can be carried out to show the change in temperature with reaction conversion. If the mean molar heat capacity of the reactants and products are assumed constant, then for a given starting temperature for the reaction Ttn, the temperature of the reaction mixture will be proportional to the reactor conversion X for adiabatic operation, Figure 6.4a. As the conversion increases, the temperature decreases because of the reaction endotherm. If the reaction could proceed as far as equilibrium, then it would reach the equilibrium temperature TE. Figure 6.4b shows how equilibrium conversion can be increased by dividing the reaction into stages and reheating the reactants...
Cylinders have the advantage that they are cheap to manufacture. In addition to varying the shape, the distribution of the active material within the pellets can be varied, as illustrated in Figure 6.7. For packed-bed reactors, the size and shape of the pellets and the distribution of active material within the pellets can be varied through the length of the reactor to control the rate of heat release (for exothermic reactions) or heat input (for endothermic reactions). This involves creating different zones in the reactor, each with its own catalyst designs. [Pg.121]

In addition to the advantage of high heat transfer rates, fluidized beds are also useful in situations where catalyst particles need frequent regeneration. Under these circumstances, particles can be removed continuously from the reactor bed, regenerated and recycled back to the bed. In exothermic reactions, the recycling of catalyst can be used to remove heat from the reactor, or in endothermic reactions, it can be used to add heat. [Pg.130]

Reactor heat carrier. As pointed out in Chapter 7, if adiabatic operation is not possible and it is not possible to control temperature by indirect heat transfer, then an inert material can be introduced to the reactor to increase its heat capacity flowrate (i.e. product of mass flowrate and specific heat capacity). This will reduce temperature rise for exothermic reactions or reduce temperature decrease for endothermic reactions. The introduction of an extraneous component as a heat carrier effects the recycle structure of the flowsheet. Figure 13.6a shows an example of the recycle structure for just such a process. [Pg.261]

Cold shot. Injection of cold fresh feed for exothermic reactions or preheated feed for endothermic reactions to intermediate points in the reactor can be used to control the temperature in the reactor. Again, the heat integration characteristics are similar to adiabatic operation. The feed is a cold stream if it needs to be increased in temperature or vaporized and the product a hot stream if it needs to be decreased in temperature or condensed. If heat is provided to the cold shot or hot shot streams, these are additional cold streams. [Pg.439]


See other pages where Reactor endothermic reactions is mentioned: [Pg.178]    [Pg.178]    [Pg.41]    [Pg.42]    [Pg.59]    [Pg.328]    [Pg.207]    [Pg.127]    [Pg.505]    [Pg.508]    [Pg.481]    [Pg.178]    [Pg.170]    [Pg.224]    [Pg.1321]    [Pg.37]    [Pg.174]    [Pg.176]    [Pg.245]    [Pg.252]    [Pg.221]    [Pg.174]    [Pg.617]    [Pg.657]    [Pg.105]    [Pg.121]    [Pg.129]   
See also in sourсe #XX -- [ Pg.262 ]




SEARCH



Endothermal reaction

Endothermic reaction

Endothermicities

Endothermicity

Endotherms

Reactor temperature endothermic reactions

Reactors reaction

© 2024 chempedia.info