Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reactor choice series reactions

But what is the correct choice a byproduct reaction calls for a continuous well-mixed reactor. On the other hand, the byproduct series reaction calls for a plug-flow reactor. It would seem that, given this situation, some level of mixing between a plug-flow and a continuous well-mixed reactor will give the best... [Pg.31]

Figure 2.3 Choice of reactor type for mixed parallel and series reactions when the parallel reaction has a higher order than the primary reaction. Figure 2.3 Choice of reactor type for mixed parallel and series reactions when the parallel reaction has a higher order than the primary reaction.
Bubble columns in series have been used to establish the same effective mix of plug-flow and back-mixing behavior required for Hquid-phase oxidation of cyclohexane, as obtained with staged reactors in series. WeU-mixed behavior has been established with both Hquid and air recycle. The choice of one bubble column reactor was motivated by the need to minimize sticky by-products that accumulated on the walls (93). Here, high air rate also increased conversion by eliminating reaction water from the reactor, thus illustrating that the choice of a reactor system need not always be based on compromise, and solutions to production and maintenance problems are complementary. Unlike the Hquid in most bubble columns, Hquid in this reactor was intentionally weU mixed. [Pg.524]

In this chapter, we develop some guidelines regarding choice of reactor and operating conditions for reaction networks of the types introduced in Chapter 5. These involve features of reversible, parallel, and series reactions. We first consider these features separately in turn, and then in some combinations. The necessary aspects of reaction kinetics for these systems are developed in Chapter 5, together with stoichiometric analysis and variables, such as yield and fractional yield or selectivity, describing product distribution. We continue to consider only ideal reactor models and homogeneous or pseudohomogeneous systems. [Pg.422]

For reaction orders other than 1, the best choice is not two equal size tanks in series. Several situations have been analyzed (see Levenspiel [5] for a clear discussion) Luss [6] has provided a simple analytical procedure for determining the optimum size ratio. For second-order reactions in two tanks in series, this ratio is about 1 1 for low conversions and 1 2 for high conversions. However, the overall advantage of the variable-sized multistage system is rather small compared to equal sizes, and this, plus the above comments, usually dictates only considering equal size reactors in series. [Pg.428]

The secondary reactions are parallel with respect to ethylene oxide but series with respect to monoethanolamine. Monoethanolamine is more valuable than both the di- and triethanolamine. As a first step in the flowsheet synthesis, make an initial choice of reactor which will maximize the production of monoethanolamine relative to di- and triethanolamine. [Pg.50]

A semiconductor microcircuit is a series of electrically intercoimected films that are laid down by chemical reactions. The successful growth and manipulation of these films depend heavily on proper design of the chemical reactors in which they are laid down, the choice of chemical reagents, separation and purification steps, and the design and operation of sophisticated control systems. Microelectronics based on microcircuits are commonly used in such consumer items as calculators, digital watches, personal computers, and microwave ovens and in information processing units that are used in communication, defense, space exploration, medicine, and education. [Pg.53]

Imagine a first-order reaction taking place in such a system under conditions where rk, i.e. VkjQ, is 10 and R is 5. Using the technique previously adopted in Sect. 5.1 and outlined in Appendix 2, we can readily calculate that this system would achieve 96.3% conversion of reactant. Under these conditions, the recycle reactor volume turns out to be 3.03 times that of an ideal PFR required for the same duty. This type of calculation allows Fig. 14 to be constructed this is similar in form to Fig. 12, but lines of constant for the tanks-in-series model have been replaced by lines of constant recycle ratio for the recycle model. From a size consideration alone, the choice of a PFR recycle reactor is not particularly... [Pg.258]

In continuous emulsion polymerization of styrene in a series of CSTR s, it was clarified that almost all the particles formed in the first reactor (.2/2) Since the rate of polymerization is, under normal reaction conditions, proportional to the number of polymer particles present, the number of succeeding reactors after the first can be decreased if the number of polymer particles produced in the first stage reactor is increased. This can be realized by increasing emulsifier and initiator concentrations in the feed stream and by lowering the temperature of the first reactor where particle formation is taking place (2) The former choice is not desirable because production cost and impurities which may be involved in the polymers will increase. The latter practice could be employed in parallel with the technique given in this paper. [Pg.126]

In this chapter, we discuss reactor selection and general mole balances for multiple reactions. First, we describe the four baste types of multiple reactions series, parallel, independent, and complex. Next, we define the selectivity parameter and discuss how it can be used to minimize unwanted side reactions by proper choice of operating conditions and reactor selection. We then develop the algorithm that can be used to solve reaction engineering problems when multiple reactions are involved. Finally, a number of examples are given that show how the algorithm is applied to a number of real reactions. [Pg.305]

A large number of liquid-phase organic reactions are carried out in batch or semibatch reactors. For large volume, liquid-phase reactions, the use of a series of CSTRs is quite common. For large volume, vapor-phase catalytic reactions, tubular reactors are often the reactors of choice. [Pg.331]

Therefore, the problems which faced the would-be designers of chain reactors early in 1941 were (1) the choice of the proper moderator to uranium ratio, and (2) the size and shape of the uranium lumps which would most likely lead to a self-sustaining chain reaction, i.e., give the highest multiplication factor. In order to solve these problems, one had to understand the behavior of the fast, of the resonance, and of the thermal neutrons. We were concerned with the second problem which itself consisted of two parts. The first was the measurement of the characteristics of the resonance lines of isolated uranium atoms, the second, the composite effect of this absorption on the neutron spectrum and total resulting absorption. One can liken the first task to the measurement of atomic constants, such as molecular diameter, the second one, to the task of kinetic gas theory which obtains the viscosity and other properties of the gas from the properties of the molecules. The first task was largely accomplished by Anderson and was fully available to us when we did our work. Anderson s and Fermi s work on the absorption of uranium, and on neutron absorption in general, also acquainted us with a number of technics which will be mentioned in the third and fourth of the reports of this series. Finally, Fermi, Anderson, and Zinn carried out, in collaboration with us in Princeton, one measurement of the resonance absorption. This will be discussed in the third article of this series. [Pg.166]


See other pages where Reactor choice series reactions is mentioned: [Pg.437]    [Pg.803]    [Pg.39]    [Pg.927]    [Pg.963]    [Pg.26]    [Pg.329]    [Pg.139]    [Pg.58]    [Pg.168]    [Pg.267]    [Pg.396]    [Pg.47]    [Pg.353]    [Pg.283]    [Pg.56]    [Pg.158]    [Pg.531]    [Pg.83]    [Pg.648]    [Pg.317]   
See also in sourсe #XX -- [ Pg.106 , Pg.112 , Pg.113 ]




SEARCH



Reaction series reactions

Reactor choice

Reactors reaction

Series reactions

© 2024 chempedia.info