Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Uranium isolation

In 1798 Martin Klaproth, who had earlier discovered and named uranium, isolated the same silvery white metal from the same problematical ore. Klaproth, however, recognized that he and Muller had isolated a new element for which he suggested the name tellurium, meaning earth. He properly acknowledged the prior work of the Baron, who is consequently listed as its discoverer. Later it was found that tellurium does occasionally exist as the free element but more often than not exists as the gold telluride. Oddly, workers who process this ore and the metal derived from it acquire a garUc-Hke odor to their breath, a condition referred to (rather honestly but certainly not flatteringly) as tellurium breath. [Pg.501]

Fig. 6-16. Thorex process, uranium isolation and third cycle flowsheet. Fig. 6-16. Thorex process, uranium isolation and third cycle flowsheet.
Gr. technetos, artificial) Element 43 was predicted on the basis of the periodic table, and was erroneously reported as having been discovered in 1925, at which time it was named masurium. The element was actually discovered by Perrier and Segre in Italy in 1937. It was found in a sample of molybdenum, which was bombarded by deuterons in the Berkeley cyclotron, and which E. Eawrence sent to these investigators. Technetium was the first element to be produced artificially. Since its discovery, searches for the element in terrestrial material have been made. Finally in 1962, technetium-99 was isolated and identified in African pitchblende (a uranium rich ore) in extremely minute quantities as a spontaneous fission product of uranium-238 by B.T. Kenna and P.K. Kuroda. If it does exist, the concentration must be very small. Technetium has been found in the spectrum of S-, M-, and N-type stars, and its presence in stellar matter is leading to new theories of the production of heavy elements in the stars. [Pg.106]

Planet Uranus) Yellow-colored glass, containing more than 1% uranium oxide and dating back to 79 A.D., has been found near Naples, Italy. Klaproth recognized an unknown element in pitchblende and attempted to isolate the metal in 1789. [Pg.200]

The wastes from uranium and plutonium processing of the reactor fuel usually contain the neptunium. Precipitation, solvent extraction, ion exchange, and volatihty procedures (see Diffusion separation methods) can be used to isolate and purify the neptunium. [Pg.213]

In 1868, within a decade of the development of the spectroscope, an orange-yeUow line was observed in the sun s chromosphere that did not exactiy coincide with the D-lines of sodium. This line was attributed to a new element which was named helium, from the Greek hellos, the sun. In 1891 an inert gas isolated from the mineral uranite showed unusual spectral lines. In 1895 a similar gas was found in cleveite, another uranium mineral. This prominent yellow spectral line was then identified as that of helium, which to that time had been thought to exist only on the sun. In 1905 it was found that natural gas from a well near Dexter, Kansas, contained nearly 2% helium (see Gas, natural). [Pg.4]

Plutonium occurs in natural ores in such small amounts that separation is impractical. The atomic ratio of plutonium to uranium in uranium ores is less than 1 10 however, traces of primordial plutonium-244 have been isolated from the mineral bastnasite (16). One sample contained 1 x 10 g/g ore, corresponding to a plutonium-244 [14119-34-7] Pu, terrestrial abundance of 7 x 10 to 2.8 x 10 g/g of mineral and to <10g of primordial Pu on earth. The content of plutonium-239 [15117 8-3], Pu, in uranium minerals is given in Table 2. [Pg.192]

Uranium pentafluoride [13775-07-0], UF, has been isolated under different conditions, leading to two different modifications, d and p. The former is a grayish white soHd, which is synthesized from the interaction of UF [7783-81-5] and HBr or by heating UF [10049-14-6] and UF to 80—100°C. The yellowish white P-modification is also obtained by reacting UF and UF, but at higher temperatures (150—200°C). The two different modifications of UF have both been stmcturaHy characterized. The a-form consists of infinite chains of octahedral UF units. The P-form has eight-coordinate uranium atoms with the fluorides in a geometry between dodecahedral and square antiprismatic. [Pg.332]

Both U(I11) and U(IV) bis-Cp complexes have been isolated, with the former exhibiting slighdy lower stabiUties. Dimeric uranium(Ill) his-ring... [Pg.333]

Hydrocarbyl Complexes. Stable homoleptic and heteroleptic uranium hydrocarbyl complexes have been synthesized. Unlike the thorium analogues, uranium alkyl complexes are generally thermally unstable due to P-hydride elimination or reductive elimination processes. A rare example of a homoleptic uranium complex is U(CH(Si(CH2)3)2)3, the first stable U(I11) homoleptic complex to have been isolated. A stmctural study indicated a triganol... [Pg.335]

ISOLATION OF URANIUM AND THORIUM FROM NATURAL SAMPLES... [Pg.214]

Of the remaining 26 undiscovered elements between hydrogen and uranium, 11 were lanthanoids which Mendeleev s system was unable to characterize because of their great chemical similarity and the new numerological feature dictated by the filling of the 4f orbitals. Only cerium, terbium and erbium were established with certainty in 1871, and the others (except promethium, 1945) were separated and identified in the period 1879 -1907. The isolation of the (unpredicted) noble gases also occurred at this time (1894-8). [Pg.29]

In 1895 Ramsay also identified helium as the gas previously found occluded in uranium minerals and mistakenly reported as nitrogen. Five years later he and Travers isolated helium from samples of atmospheric neon. [Pg.889]

In 1789 M. H. Klaproth examined pitchblende, thought at the time to be a mixed oxide ore of zinc, iron and tungsten, and showed that it contained a new element which he named uranium after the recendy discovered planet, Uranus. Then in 1828 J. J. Berzelius obtained an oxide, from a Norwegian ore now known as thorite he named this thoria after the Scandinavian god of war and, by reduction of its tetrachloride with potassium, isolated the metal thorium. The same method was subsequendy used in 1841 by B. Peligot to effect the first preparation of metallic uranium. [Pg.1250]

Since the amount of fissile material in the fuel assemblies is only about 3 percent of the uranium present, it is obvious that there cannot be a large amount of radioactive material in the SNF after fission. The neutron flux produces some newly radioactive material in the form of uranium and plutonium isotopes. The amount of this other newly radioactive material is small compared to the volume of the fuel assembly. These facts prompt some to argue that SNF should be chemically processed and the various components separated into nonradioac-tive material, material that will be radioactive for a long time, and material that could be refabricated into new reactor fuel. Reprocessing the fuel to isolate the plutonium is seen as a reason not to proceed with this technology in the United States. [Pg.884]

American nuclear chemist Glenn Seaborg s team of experimenters isolates plutonium, which proves to be a better fuel for nuclear reactors than uranium because of its greater energy yield. [Pg.1241]

When the Plutonium Project was established early in 1942, for the purpose of producing plutonium via the nuclear chain reaction in uranium in sufficient quantities for its use as a nuclear explosive, we were given the challenge of developing a chemical method for separating and isolating it from the uranium and fission products. We had already conceived the principle of the oxidation-reduction cycle, which became the basis for such a separations process. This principle applied to any process involving the use of a substance which carried plutonium in one of its oxidation states but not in another. By use of this... [Pg.10]

That magnetic measurements often raise more problems than they solve, is demonstrated for the indicated compound. We prepared a series of [ (C2H5N] i,An(NSC) e compounds (An = Th, U, Np, Pu) with cubic coordination of the actinide ion. We derived a consistent interpretation of the magnetic and optical properties of the uranium and the neptunium compounds (6 ). In the case of Pu we expect an isolated T1 ground state and a first excited state at about 728 cm-1. To our surprise we found a magnetic ground state much more pronounced than in the case of the hexachloro-complex, Fig. 4. [Pg.36]

For instance, observation of identical phases for zirconium and plutonium indicate that the zirconium compound would serve as a suitable matrix in which to isolate plutonium. Similarly, the appearance of identical phases for Th, U and Np makes possible the doping of uranium or neptunium into a thorium matrix. [Pg.61]

Erdal, B.R. Aguilar, R.D. Bayhurst, B.P. Daniels, W.R. Duffy, C.J. Lawrence, F.O. Maestas, S. Oliver, P.Q. Wolfsberg, K. "Sorption-Desorption Studies on Granite. I. Initial Studies of Strontium, Technetium, Cesium, Barium, Cerium, Europium, Uranium, Plutonium, and Americium", in "Proceedings of the Task 4 Waste Isolation Safety Assessment Program Second Contractor Information Meeting", Vol. II, Report PNL-SA-7352, Battelle Pacific Northwest Laboratory, 1978, pp. 7-67. [Pg.343]

In 1894, the Scottish chemist William Ramsay removed nitrogen and oxygen from air through chemical reactions. From the residue, Ramsay Isolated argon, the first noble gas to be discovered. A year after discovering argon, Ramsay obtained an unreactive gas from uranium-containing mineral samples. The gas exhibited the same spectral lines that had been observed in the solar eclipse of 1868. After helium was shown to exist on Earth, this new element was studied and characterized. [Pg.461]


See other pages where Uranium isolation is mentioned: [Pg.649]    [Pg.649]    [Pg.649]    [Pg.649]    [Pg.340]    [Pg.154]    [Pg.207]    [Pg.193]    [Pg.43]    [Pg.324]    [Pg.330]    [Pg.330]    [Pg.331]    [Pg.332]    [Pg.332]    [Pg.332]    [Pg.334]    [Pg.334]    [Pg.334]    [Pg.335]    [Pg.214]    [Pg.748]    [Pg.163]    [Pg.515]    [Pg.21]    [Pg.398]    [Pg.107]    [Pg.81]    [Pg.25]   
See also in sourсe #XX -- [ Pg.6 ]




SEARCH



© 2024 chempedia.info