Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reactivity alkylation/ acylation

Ualike the multiple substitutions that often occur in Friedel-Crafts alkylations, acylations never occur more than once on a ring because the product acyl-benzene is less reactive than the nonacylated starting material. We ll account for this reactivity difference in the next section. [Pg.558]

In the first step, a resin-bound secondary amine is acylated with bromoacetic acid, in the presence of N,N-diisopropylcarbodiimide. Acylation of secondary amines is difficult, especially when coupHng an amino acid with a bulky side chain. The sub-monomer method, on the other hand, is facilitated by the use of bromoacetic acid, which is a very reactive acylating agent Activated bromoacetic acid is bis-reactive, in that it acylates by reacting with a nucleophile at the carbonyl carbon, or it can alkylate by reacting with a nucleophile at the neighboring ah-phatic carbon. Because acylation is approximately 1000 times faster than alkylation, acylation is exclusively observed. [Pg.4]

The acyl-enzyme can eliminate the 4-chlorine atom to generate this reactive intermediate that can then react with a nearby nucleophile such as His57 to give an alkylated acyl-enzyme derivative in which the inhibitor moiety is bound to the enzyme by two covalent bonds (Scheme 11.5). Inhibition is irreversible.59 The mechanism has been confirmed by X-ray structural analysis of protease-isocoumarin complexes. There is a cross-link between the inhibitor and the Serl95 and His57 residues of PPE.60 Human leukocyte elastase is also very efficiently inactivated.61... [Pg.372]

Formally related reactions are observed when anthracene [210] or arylole-fines [211-213] are reduced in the presence of carboxylic acid derivatives such as anhydrides, esters, amides, or nitriles. Under these conditions, mono- or diacylated compounds are obtained. It is interesting to note that the yield of acylated products largely depends on the counterion of the reduced hydrocarbon species. It is especially high when lithium is used, which is supposed to prevent hydrodimerization of the carboxylic acid by ion-pair formation. In contrast to alkylation, acylation is assumed to prefer an Sn2 mechanism. However, it is not clear if the radical anion or the dianion are the reactive species. The addition of nitriles is usually followed by hydrolysis of the resulting ketimines [211-213]. [Pg.114]

Hydroxamic acids 1 (Scheme 1) present both N- and O-centers in their reactions with electrophilic centers. However, commonly alkylation/acylation/phosphorylation occur via the O-center. The ionized hydroxamate is of course more reactive than the unionized form, as is the case with oximes and the corresponding oximates. [Pg.821]

Diels-Alder reactions of oxazoles afford useful syntheses of pyridines (Scheme 53) (74AHC( 17)99). A study of the effect of substituents on the Diels-Alder reactivity of oxazoles has indicated that rates decrease with the following substituents alkoxy > alkyl > acyl >> phenyl. The failure of 2- and 5-phenyl-substituted oxazoles to react with heterodienophiles is probably due to steric crowding. In certain cases, bicyclic adducts of type (359) have been isolated and even studied by an X-ray method (87BCJ432) they can also decompose to yield furans (Scheme 54). With benzyne, generated at 0°C from 1-aminobenzotriazole and lead tetraacetate under dilute conditions, oxazoles form cycloadducts (e.g. 360) in essentially quantitative yield (90JOC929). They can be handled at room temperature and are decomposed at elevated temperatures to isobenzofuran. [Pg.419]

Hydroxylamines and hydrazines can be acylated on insoluble supports using the same type of acylating agent as is used for the acylation of amines [146-149]. Because of their higher nucleophilicity, hydroxylamines or hydrazines can be acylated more readily than amines, and unreactive acylating agents such as carboxylic esters can sometimes be successfully employed (Table 13.10). Polystyrene-bound O-alkyl hydroxamic acids can be N-alkylated by treatment with reactive alkyl halides and bases such as DBU (Entry 5, Table 13.10). [Pg.342]

The esterification of support-bound carboxylic acids has not been investigated as thoroughly as the esterification of support-bound alcohols. Resin-bound activated acid derivatives that are well suited to the preparation of esters include O-acylisoureas (formed from acids and carbodiimides), acyl halides [23,226-228], and mixed anhydrides (Table 13.15). A-Acylurea formation does not compete with esterifications as efficiently as it does with the formation of amides from support-bound acids. Esters can also be prepared from carboxylic acids on insoluble supports by acid-catalyzed esterification [152,229]. Alternatively, support-bound carboxylic acids can be esteri-fied by O-alkylation, either with primary or secondary aliphatic alcohols under Mitsu-nobu conditions or with reactive alkyl halides or sulfonates (Table 13.15). [Pg.353]

The aminophenols are chemically reactive, undergoing reactions involving both the aromatic amino group and the phenolic hydroxyl moiety, as well as substitution on the benzene ring. Oxidation leads to the formation of highly colored polymeric quinoid structures. 2-Aminophenol undergoes a variety of cyclization reactions. Important reactions include alkylation, acylation, diazonium salt formation, cyclization reactions, condensation reactions, and reactions of the benzene ring. [Pg.81]

The conversion of CO + H2 (syn-gas) to hydrocarbons and oxygenates (Fischer-Tropsch chemistry)119 is of considerable industrial importance and recently the activation and fixation of carbon monoxide in homogeneous systems has been an active area for research.120,121 The early transition elements and the early actinide elements, in particular zirconium124 and thorium,125 126 supported by two pentamethylcyclopentadienyl ligands have provided a rich chemistry in the non-catalytic activation of CO. Reactions of alkyl and hydride ligands attached to the Cp2M centers with CO lead to formation of reactive tf2-acyl or -formyl compounds.125,126 These may be viewed in terms of the resonance forms (1) and (2) shown below. [Pg.342]

In other variations ketones are produced. The acyliron monoanion may be alkylated again with another alkyl halide to form a transient acyl-alkyl iron intermediate, which rapidly decomposes into ketone and the polynuclear iron carbonyl complex. This reaction is limited, however, because only very reactive alkylating agents such as methyl, allyl, and benzyl halides will react with the weakly nucleophilic acyliron monoanions ... [Pg.333]

Both type 1 and type 2 azole N-oxides like 1 and 9 upon alkylation, acylation, sulfonylation, phosphorylation, or silylation at the oxygen atom give rise to highly reactive N-alkyloxyazolium or N-acyloxyazolium salts, etc., (abbreviated common term oxyazolium salts) which can undergo a series of exquisite and useful reactions with nucleophiles, bases, and electrophiles. In most cases the whole sequence can be run in one pot. Reactions of this kind are discussed in the sections dealing with the individual azole N-oxides. A brief overview, listing the reactions of this kind that have been observed in the azole N-oxide series, is presented below. Some of these reaction types have been observed in a few cases only and... [Pg.8]

Scheme 7.6. Reactivity of acylating agents containing an alkylating functional group [25, 26]. Scheme 7.6. Reactivity of acylating agents containing an alkylating functional group [25, 26].
One successful approach to suicide inhibitors for serine proteases is outlined in Figure 8. The dihydrocoumarin reacts with chymotrypsin to form an acyl enzyme and uncover a p-hydroxybenzyl chloride functional group. This is an extremely reactive alkylating agent due to formation of the quinone methide and the enzyme is rapidly inactivated (44). It is likely that suicide substrates will be applied to other proteases in the future. [Pg.357]

Enamines are intermediate in reactivity more reactive than an enol, but less reactive than an enolate ion. Enamine reactions occur under milder conditions than enolate reactions, so they avoid many side reactions. Enamines displace halides from reactive alkyl halides, giving alkylated iminium salts. The iminium ions are unreactive toward further alkylation or acylation. The following example shows benzyl bromide reacting with the pyrrolidine enamine of cyclohexanone. [Pg.1053]

The enamine alkylation procedure is sometimes called the Stork reaction, after its inventor, Gilbert Stork of Columbia University. The Stork reaction can alkylate or acylate the a position of a ketone, using a variety of reactive alkyl and acyl halides. Some halides that react well with enamines to give alkylated and acylated ketone derivatives are the following ... [Pg.1053]

Finally, an even more familiar example that you may never have thought about. You are well aware now that amides are planar, with partially double C-N bonds, and that tertiary amides have one alkyl group cis to oxygen and one tram. But what about esters Esters are less reactive than acyl chlorides because of donation from the oxygen p orbital into the carbonyl tt, so we expect them to be planar too, and they are. But there are two possible planar conformations for an ester one with R cis to oxygen and one with R trans. Which is preferred ... [Pg.1133]

The second section, immediately following this introduction, tries to provide an account on the theory and the methods known to give (stereocontrolled) access to the enolates. The third section gathers the most important descriptions available about lithium enolates in the gas or solid phase, as well as in solution. These data are classified according to the physicochemical techniques employed. The fourth section of this chapter, dedicated to the reactivity of lithium enolates, has been restricted to three of their main applications, namely the protonation, alkylation/acylation and aldolisation reactions. [Pg.527]


See other pages where Reactivity alkylation/ acylation is mentioned: [Pg.3]    [Pg.57]    [Pg.76]    [Pg.80]    [Pg.170]    [Pg.54]    [Pg.173]    [Pg.21]    [Pg.310]    [Pg.216]    [Pg.180]    [Pg.146]    [Pg.154]    [Pg.38]    [Pg.1518]    [Pg.63]    [Pg.359]    [Pg.104]    [Pg.3]    [Pg.223]    [Pg.287]    [Pg.80]    [Pg.1635]    [Pg.167]    [Pg.218]    [Pg.104]    [Pg.1054]    [Pg.3]    [Pg.347]    [Pg.63]   
See also in sourсe #XX -- [ Pg.71 ]




SEARCH



Acylation reactivity

Acyls alkylation

© 2024 chempedia.info