Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reactions thermodynamic description

Given the initial and final states of an elementary reaction, and therefore a thermodynamic description of the system, there exist a priori an infinite number of paths (i.e., mechanisms) from the initial to the final state. The essential role of... [Pg.7]

First, the simple thermodynamic description of pe (or Eh) and pH are both most directly applicable to the liquid aqueous phase. Redox reactions can and do occur in the gas phase, but the rates of such processes are described by chemical kinetics and not by equilibrium concepts of thermodynamics. For example, the acid-base reaction... [Pg.421]

To provide a thermodynamic description of a system in which a chemical reaction is occurring it is usually not sufficient that temperature, pressure, and volume be specified. It is also required to specify the composition of the system in terms of the concentrations of the various components present. This leads to the free energy expression... [Pg.644]

Unsually short NMR T, relaxation values were observed for the metal-bonded H-ligands in HCo(dppe)2, [Co(H2)(dppe)]+ (dppe = l,2-bis(diphenylphosphino)ethane), and CoH(CO) (PPh3)3.176 A theoretical analysis incorporating proton-meta) dipole-dipole interactions was able to reproduce these 7) values if an rCo H distance of 1.5 A was present, a value consistent with X-ray crystallographic experiments. A detailed structural and thermodynamic study of the complexes [H2Co(dppe)2]+, HCo(dppe)2, [HCo(dppe)2(MeCN)]+, and [Co(dppe)2(MeCN)]2+ has been reported.177 Equilibrium and electrochemical measurements enabled a thorough thermodynamic description of the system. Disproportionation of divalent [HCo(dppe)2]+ to [Co(dppe)2]+ and [H2Co(dppe)2]+ was examined as well as the reaction of [Co(dppe)2]+ with H2. [Pg.18]

All approaches are based either on the thermodynamical description of the gas-solid phase transition by classical nucleation theory or on a detailed discussion of the relevant chemical reactions leading finally to critical clusters (e.g. review by Gail, Sedlmayr, 1987d). We will refrain from a presentation of these various approaches but only list the basic molecules from which the primary condensates are likely to be formed ... [Pg.170]

The characterization and calorimetric results for a series of displacement reactions (equations 231-233) show little difference between CeHg and CH2C12 solvent.644 The relative displacement energies are P(OPh)3 ethylene > cyclooctene > cis-butene > styrene > cyclopentene > nitrostyrene > cyclohexene. These data are used to give a thermodynamic description of the trans effect. [Pg.404]

With the establishment of conventions for the Standard State and for the reference zero value of the chemical potential, it is possible to develop fully the thermodynamic description of chemical reactions. This development relies on the concept of thermodynamic activity, introduced in Section 1.2, and on the condition for chemical equilibrium in a reaction 1,15... [Pg.25]

Equilibria involving reductive dissolution reactions add to the complexity of mineral solubility phenomena in just the way that pE-pH diagrams are more complicated than ordinary predominance diagrams, like that in Fig. 3.7. The electron activity or pE value becomes one of the master variables whose influence on dissolution reactions must be evaluated in tandem with other intensive master variables, like pH or p(H4Si04). Moreover, the status of microbial catalysis under the suboxic conditions that facilitate changes in the oxidation states of transition metals has to be considered in formulating a thermodynamic description of reductive dissolution. This consideration is connected closely to the existence of labile organic matter and, in some cases, to the availability of photons.26... [Pg.120]

Geometrical illustrations of the efficiency of thermodynamic description of the stationary flow distribution problems as applied to the analysis of closed active and open passive hydraulic circuits were already presented in Section 3.2. The geometrical interpretation of the general models for the nonstationary flow distribution in the hydraulic circuit ((23)—(28)) and chemical systems with the set redundant mechanism of reaction ((29)-(34)) is still to be carried out which will obviously require a number of nontrivial problems to be solved. [Pg.38]

The thermodynamic approach considers micropores as elements of the structure of the system possessing excess (free) energy, hence, micropore formation processes are described in general terms of nonequilibrium thermodynamics, if no kinetic limitations appear. The applicability of the thermodynamic approach to description of micropore formation is very large, because this one is, in most cases, the result of fast chemical reactions and related heat/mass transfer processes. The thermodynamic description does not contradict to the fractal one because of reasons which are analyzed below in Sec. II. C but the nonequilibrium thermodynamic models are, in most cases, more strict and complete than the fractal ones, and the application of the fractal approach furnishes no additional information. If no polymerization takes place (that is right for most of processes of preparation of active carbons at high temperatures by pyrolysis or oxidation of primary organic materials), traditional methods of nonequilibrium thermodynamics (especially nonequilibrium statistical thermodynamics) are applicable. [Pg.38]

This is the simplest explanation for the observation that when L and M have come to an equilibrium which contains these species in comparable amounts, the concentration of L decreases to near zero even while M remains at its maximal accumulation. Recent measurements of the quasi-equilibrium which develops in asp96asn bacteriorhodopsin before the delayed reprotonation of the Schiff base confirm this kinetic paradox [115]. Two M states have been suggested also on the basis that the rise of N did not correlate with the decay of M [117]. In monomeric bacteriorhodopsin the two proposed M states in series have been distinguished spectroscopically as well [115]. It is well known, however, that kinetic data of the complexity exhibited by this system do not necessarily have a single mathematical solution. Thus, assurance that a numerically correct model represents the true behavior of the reaction must come from testing it for consistencies with physical principles. It is encouraging therefore that the model in Fig. 5 predicts spectra for the intermediates much as expected from other, independent measurements, and the rate constants produce linear Arrhenius plots and a self-consistent thermodynamic description [116]. [Pg.198]

When processes are conducted at constant T and P, the criteria for spontaneity and for equilibrium are stated more conveniently in terms of another state function called the Gibbs free energy (denoted by G), which is derived from S. Because chemical reactions are usually conducted at constant T and constant P, their thermodynamic description is based on AG rather than AS. This chapter concludes by restating the criteria for spontaneity of chemical reactions in terms of AG. Chapter 14 shows how to identify the equilibrium state of a reaction, and calculate the equilibrium constant from AG. [Pg.530]

The thermodynamic description of reactions in solution parallels the discussion just completed for ideal gas reactions. Although the result is not derived here, the Gibbs free energy change for n mol of a solute, as an ideal (dilute) solution changes in concentration from Ci to Ci mol is... [Pg.583]

The specific examples in Section 14.5 demonstrate that when 1C > 1 the reaction has progressed far toward products, and when K 1 the reaction has remained near reactants. The empirical discussion in Section 14.6 shows how the reaction quotient Q and the principle of Te Chatelier can predict the direction of spontaneous reaction and the response of an equilibrium state to an external perturbation. Here, we use the thermodynamic description of K from Section 14.3 to provide the thermodynamic basis for these results obtained empirically in Sections 14.5 and 14.6. We identify those thermodynamic factors that determine the magnitude of K. We also provide a thermodynamic criterion for predicting the direction in which a reaction proceeds from a given initial condition. [Pg.603]


See other pages where Reactions thermodynamic description is mentioned: [Pg.368]    [Pg.305]    [Pg.298]    [Pg.80]    [Pg.328]    [Pg.366]    [Pg.368]    [Pg.6]    [Pg.78]    [Pg.455]    [Pg.492]    [Pg.9]    [Pg.11]    [Pg.18]    [Pg.157]    [Pg.57]    [Pg.86]    [Pg.115]    [Pg.142]    [Pg.214]    [Pg.202]    [Pg.78]    [Pg.455]    [Pg.14]    [Pg.303]    [Pg.43]    [Pg.190]    [Pg.201]    [Pg.19]    [Pg.37]    [Pg.571]    [Pg.21]    [Pg.570]   


SEARCH



Reactions thermodynamics

Thermodynamic description

Thermodynamic reactions

Thermodynamical description

Thermodynamics description

© 2024 chempedia.info