Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sulfonylation Reactions

Because of their many side reactions, sulfonyl isocyanates, and especially the highly reactive chlorosulfonyl isocyanates, have been only sporadically employed (21HCA861). [Pg.181]

Reducing agents such as hydroiodic acid, hydrobromic acid, hypophosphorus acid, and hydrazine can be utilized in this reaction. Sulfonyl chloride group (S02C1), the most common starting chemical moiety, can be prepared from the sulfonic acid group by reaction with phosphorus pentachloride or phosphorus trichloride and chlorine (18, 20, 21, 36, 37,... [Pg.388]

Various synthetic approaches have been demonstrated for the synthesis of PAEs since early days [35 0], PAEs were synthesized by Ullmann condensation between bisphenols and aryl fcis-halide monomers using Cu(I) salt/pyridine as catalyst [36], General Electric developed the first commercially successful PAE poly(2,6-dimethyl phenylene oxide) (PPO) [38], It was prepared by oxidative coupling of 2,6-dimethyI phenol. However, this process has its own restrictions, because it does not allow much structural variation or inclusion of any electron-withdrawing group into the polymer main chain. First attempts to synthesize polysulfones (PSF) were successfully done by Friedel-Crafts sulfonylation reaction of arylenedisulfonyl chlorides, for example, diphenyl ether-4,4 -disulfonyl chloride with diaryl ethers, for example, diphenyl ether, or by self-condensation of 4-phenoxy benzene sulfonyl chloride in the presence of FeCls [41], Whereas the former reaction involves side reactions (sulfonylation not only in the para- but also in the ort/io-position), the latter produces only the desired linear all-para products. [Pg.12]

Active methylene or methine compounds, to which two EWGs such as carbonyl, alko.xycarbonyl, formyl, cyano, nitro, and sulfonyl groups are attached, react with butadiene smoothly and their acidic hydrogens are displaced with the 2,7-octadienyl group to give mono- and disubstituted compounds[59]. 3-Substituted 1,7-octadienes are obtained as minor products. The reaction is earned out with a /3-keto ester, /9-diketone, malonate, Q-formyl ketones, a-cyano and Q-nitro esters, cya noacetamide, and phenylsulfonylacetate. Di(octadienyl)malonate (61) obtained by this reaction is converted into an... [Pg.432]

Similar halogenations have been done on 2-lithio-l-phenylsulfonylindole[2], 2-Lithio-l-phenylsulfonylindole is readily converted to the 2-(trimethylsilyl) derivative[2,3]. 2-Trialkylstannylindoles can also be prepared via 2-lithio-indoles[4,5], 2-Sulfonamido groups can be introduced by reaction of a 2-lithioindole with sulfur dioxide, followed by conversion of the sulfinic acid group to the sulfonyl chloride with A-chlorosuccinimide[6]. [Pg.102]

It has been reported that the reactions of 2-aminothiazoles and sulfonyl halides generally afford mono sulfonyl and disulfonyl (171) compounds (Scheme 109) (355-362). Angyal (358) explained this result by a mechanism where in. the first reaction the product would be the cation (172)... [Pg.69]

The reaction of alcohols with acyl chlorides is analogous to their reaction with p toluenesulfonyl chloride described earlier (Section 8 14 and Table 15 2) In those reactions a p toluene sulfonate ester was formed by displacement of chloride from the sulfonyl group by the oxygen of the alcohol Carboxylic esters arise by displacement of chlonde from a carbonyl group by the alcohol oxygen... [Pg.640]

Fig. 11. Synthesis of DNQ photosensitizers found in commercial resists, (a) Condensation of l,2-diazonaphthoquinone-5-sulfonyl chloride with 1,2,3-trihydroxybenzophenone. Often the reaction is not carried to completion so the product is a mixture of monodi- and trisubstituted products, (b)... Fig. 11. Synthesis of DNQ photosensitizers found in commercial resists, (a) Condensation of l,2-diazonaphthoquinone-5-sulfonyl chloride with 1,2,3-trihydroxybenzophenone. Often the reaction is not carried to completion so the product is a mixture of monodi- and trisubstituted products, (b)...
Other preparations of trifluoromethanesulfonic acid kiclude oxidation of methyltrifluoromethyl sulfide under a variety of conditions (10,11). Perfluorosulfonyl fluorides have also been prepared by reaction of fluoroolefkis with sulfuryl fluoride (12,13). Chinese chemists have pubflshed numerous papers on the conversion of telomer-based alkyl iodides to sulfonyl fluorides (14,15) (eqs. 8 and 9) ... [Pg.314]

The metallic salts of trifluoromethanesulfonic acid can be prepared by reaction of the acid with the corresponding hydroxide or carbonate or by reaction of sulfonyl fluoride with the corresponding hydroxide. The salts are hydroscopic but can be dehydrated at 100°C under vacuum. The sodium salt has a melting point of 248°C and decomposes at 425°C. The lithium salt of trifluoromethanesulfonic acid [33454-82-9] CF SO Li, commonly called lithium triflate, is used as a battery electrolyte in primary lithium batteries because solutions of it exhibit high electrical conductivity, and because of the compound s low toxicity and excellent chemical stabiUty. It melts at 423°C and decomposes at 430°C. It is quite soluble in polar organic solvents and water. Table 2 shows the electrical conductivities of lithium triflate in comparison with other lithium electrolytes which are much more toxic (24). [Pg.315]

Sulfonylation. Under Friedel-Crafts reaction conditions, sulfonyl haUdes and sulfonic acid anhydrides sulfonylate aromatics (139), a reaction that can be considered the analogue of the related acylation with acyl haUdes and anhydrides. The products are sulfones. Sulfonyl chlorides are the most frequently used reagents, although the bromides and fluorides also react ... [Pg.560]

Methanesulfonic and ben2enesulfonic anhydrides are the most frequently used anhydrides ia Friedel-Crafts sulfonylation reactions ... [Pg.560]

Sulfonic acid hydrazides, RSO2NHNH2, are prepared by the reaction of hydraziae and sulfonyl haUdes, generally the chloride RSO2CI. Some of these have commercial appHcations as blowiag agents. As is typical of hydrazides generally, these compounds react with nitrous acid to form azides (26), which decompose thermally to the very reactive, electron-deficient nitrenes (27). The chemistry of sulfonic acid hydrazides and their azides has been reviewed (87). [Pg.280]

Wheieas the BPO—DMA ledox system works well for curing of unsaturated polyester blends, it is not a very effective system for initiating vinyl monomer polymerizations, and therefore it generally is not used in such appHcations (34). However, combinations of amines (eg, DMA) and acyl sulfonyl peroxides (eg, ACSP) are very effective initiator systems at 0°C for high conversion suspension polymerizations of vinyl chloride (35). BPO has also been used in combination with ferrous ammonium sulfate to initiate emulsion polymerizations of vinyl monomers via a redox reaction (36). [Pg.224]

A large number of Diels-Alder-type reactions, involving both aromatic and sulfonyl isocyanates, have been reported. Heterodienes having high electron density ate found to add to isocyanates to form sis membered heterocycles as shown in Figure 2 (48—50). [Pg.450]

Fig. 2. Diels-Alder-type reactions of aromatic and sulfonyl isocyanates. Fig. 2. Diels-Alder-type reactions of aromatic and sulfonyl isocyanates.
A comprehensive review of reactions of isocyanates and 1,3-dipolar compounds has been previously pubhshed (51). The example shown illustrates the reaction of azides and isocyanates to yield tetrazoles (14,R = alkyl or aryl, R = aryl or sulfonyl) (52,53). [Pg.450]

Naphthalenesulfonic acid can be converted to l-naphthalenethiol/T25 -J6 - by reduction of the related sulfonyl chloride this product has some utihty as a dye intermediate, and is converted by reaction with alkyl isocyanates to 3 -naphthyl-A/-alkylthiocarbamates, which have pesticidal and herbicidal... [Pg.490]

On dehydration, nitro alcohols yield nitro-olefins. The ester of the nitro alcohol is treated with caustic or is refluxed with a reagent, eg, phthaUc anhydride or phosphoms pentoxide. A mil der method involves the use of methane sulfonyl chloride to transform the hydroxyl into a better leaving group. Yields up to 80% after a reaction time of 15 min at 0°C have been reported (5). In aqueous solution, nitro alcohols decompose at pH 7.0 with the formation of formaldehyde. One mole of formaldehyde is released per mole of monohydric nitro alcohol, and two moles of formaldehyde are released by the nitrodiols. However, 2-hydroxymethyl-2-nitro-l,3-propanediol gives only two moles of formaldehyde instead of the expected three moles. The rate of release of formaldehyde increases with the pH or the temperature or both. [Pg.61]

Phthalocyanine sulfonic acids, which can be used as direct cotton dyes (1), are obtained by heating the metal phthalocyanines in oleum. One to four sulfo groups can be introduced in the 4-position by varying concentration, temperature, and reaction time (103). Sulfonyl chlorides, which are important intermediates, can be prepared from chlorosulfonic acid and phthalocyanines (104). The positions of the sulfonyl chloride groups are the same as those of the sulfonic acids (103). Other derivatives, eg, chlormethylphthalocyanines (105—107), / /f-butyl (108—111), amino (112), ethers (109,110,113—116), thioethers (117,118), carboxyl acids (119—122), esters (123), cyanides (112,124—127), and nitrocompounds (126), can be synthesized. [Pg.505]

PoIysuIfonyIa.tlon, The polysulfonylation route to aromatic sulfone polymers was developed independendy by Minnesota Mining and Manufacturing (3M) and by Imperial Chemical Industries (ICI) at about the same time (81). In the polymerisation step, sulfone links are formed by reaction of an aromatic sulfonyl chloride with a second aromatic ring. The reaction is similar to the Friedel-Crafts acylation reaction. The key to development of sulfonylation as a polymerisation process was the discovery that, unlike the acylation reaction which requires equimolar amounts of aluminum chloride or other strong Lewis acids, sulfonylation can be accompHshed with only catalytic amounts of certain haUdes, eg, FeCl, SbCl, and InCl. The reaction is a typical electrophilic substitution by an arylsulfonium cation (eq. 13). [Pg.332]

Reaction of bis (sulfonyl chloride)s with diaryl ether produces polyethersulfones. For example, condensation of diphenyl ether with the disulfonylchloride of diphenyl ether yields polyethersulfone (5) ... [Pg.332]

The PMBs, when treated with electrophilic reagents, show much higher reaction rates than the five lower molecular weight homologues (benzene, toluene, (9-, m- and -xylene), because the benzene nucleus is highly activated by the attached methyl groups (Table 2). The PMBs have reaction rates for electrophilic substitution ranging from 7.6 times faster (sulfonylation of durene) to ca 607,000 times faster (nuclear chlorination of durene) than benzene. With rare exception, the PMBs react faster than toluene and the three isomeric dimethylbenzenes (xylenes). [Pg.504]

N -Heterocyclic Sulfanilamides. The parent sulfanilamide is manufactured by the reaction of A/-acetylsulfanilyl chloride with excess concentrated aqueous ammonia, and hydrolysis of the product. Most heterocycHc amines are less reactive, and the condensation with the sulfonyl chloride is usually done in anhydrous media in the presence of an acid-binding agent. Use of anhydrous conditions avoids hydrolytic destmction of the sulfonyl chloride. The solvent and acid-binding functions are commonly filled by pyridine, or by mixtures of pyridine and acetone. Tertiary amines, such as triethylamine, may be substituted for pyridine. The majority of A/ -heterocycHc sulfanilamides are made by simple condensation with A/-acetylsulfanilyl chloride and hydrolysis. [Pg.468]


See other pages where Sulfonylation Reactions is mentioned: [Pg.445]    [Pg.369]    [Pg.445]    [Pg.369]    [Pg.119]    [Pg.22]    [Pg.6]    [Pg.89]    [Pg.92]    [Pg.95]    [Pg.69]    [Pg.119]    [Pg.125]    [Pg.85]    [Pg.230]    [Pg.269]    [Pg.203]    [Pg.425]    [Pg.103]    [Pg.331]    [Pg.332]    [Pg.332]    [Pg.254]   
See also in sourсe #XX -- [ Pg.284 ]

See also in sourсe #XX -- [ Pg.1256 ]




SEARCH



Allylic sulfonylation reactions

Amines sulfonyl peroxide reactions

And sulfonylation reactions

Carbonyl compounds reactions with sulfonyl-stabilized carbanions

Cross-reactions sulfonyl group

Cyclopentane, sulfonyl synthesis via cycloaddition reactions

Diazo transfer reaction sulfonyl azides

Diazomethane, reaction with D-camphor-10-sulfonyl chloride and

Diazomethane, reaction with D-camphor-10-sulfonyl chloride and triethylamine

Dithioacetals, reaction with sulfonyl

Dithioacetals, reaction with sulfonyl chloride

Glucose reaction with sulfonyl chloride

Halides, sulfonyl, addition reactions

Reaction with sulfonyl chlorides

Reaction with sulfonyl halides

Reactions of Amines with Sulfonyl Chlorides

Reactions of Organic Sulfonyl Chlorides

Reactions of Sulfonyl Azides

Reactions sulfonyl azides

Reactions with sulfonyl-stabilized carbanions

Sulfonyl Mannich reaction

Sulfonyl chloride reactions

Sulfonyl chlorides reaction with alcohols

Sulfonyl chlorides reaction with amides

Sulfonyl chlorides reaction with amines

Sulfonyl chlorides reaction with ammonia

Sulfonyl chlorides reaction with aromatic compounds

Sulfonyl chlorides reactions with Grignard reagents

Sulfonyl compounds, nucleophilic reactions

Sulfonyl fluorides, reaction with aromatic

Sulfonyl halides reaction with aromatic

Sulfonyl halides substitution reactions

Sulfonyl isocyanate, reactions with amines

Sulfonyl reaction

Sulfonyl reaction

Sulfonyl transfer reactions

© 2024 chempedia.info