Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reactions phase-transfer synthetic

Quaternary ammonium salts as we have seen are useful m synthetic organic chem istry as phase transfer catalysts In another more direct application quaternary ammo mum hydroxides are used as substrates m an elimination reaction to form alkenes... [Pg.938]

Organic Reagents. Amine oxides are used ia synthetic organic chemistry ia the preparation of olefins, or phase-transfer catalysts (47), ia alkoxylation reactions (48), ia polymerization, and as oxidizing agents (49,50). [Pg.192]

Other commercial naphthalene-based sulfonic acids, such as dinonylnaphthalene sulfonic acid, are used as phase-transfer catalysts and acid reaction catalysts in organic solvents (71). Dinonylnaphthalene sulfonic acid is an example of a water-insoluble synthetic sulfonic acid. [Pg.100]

Quaternaiy ammonium salts, as we have seen, aie useful in synthetic organic chemistry as phase-transfer catalysts. In another, more direct application, quaternaiy ammonium hydroxides aie used as substrates in an elimination reaction to fonn alkenes. [Pg.938]

Of course, the most practical and synthetically elegant approach to the asymmetric Darzens reaction would be to use a sub-stoichiometric amount of a chiral catalyst. The most notable approach has been the use of chiral phase-transfer catalysts. By rendering the intermediate etiolate 86 (Scheme 1.24) soluble in the reaction solvent, the phase-transfer catalyst can effectively provide the enolate with a chiral environment in which to react with carbonyl compounds. [Pg.22]

Phase-transfer catalysis is another modern synthetic method that is currently receiving much attention. This method tends to have several advantages over traditional methods, such as higher yields, the requirement of milder reaction conditions, simplicity and the use of relatively inexpensive reagents. [Pg.985]

Various synthetic routes to isocyanides have been reported since their identification over 100 years ago.8 Until now, the useful synthetic procedures all required a dehydration reaction8-11 Although the carbylamine reaction involving the dichlorocarbene intermediate is one of the early methods,8 it had not been preparatively useful until the innovation of phase-transfer catalysis (PTC).4 5... [Pg.99]

The diazo transfer reaction between p-toluenesulfonyl azide and active methylene compounds is a useful synthetic method for the preparation of a-diazo carbonyl compounds. However, the reaction of di-tert-butyl malonate and p-toluenesulfonyl azide to form di-tert-butyl diazomalonate proceeded to the extent of only 47% after 4 weeks with the usual procedure." The present procedure, which utilizes a two-phase medium and methyltri-n-octylammonium chloride (Aliquat 336) as phase-transfer catalyst, effects this same diazo transfer in 2 hours and has the additional advantage of avoiding the use of anhydrous solvents. This procedure has been employed for the preparation of diazoacetoacetates, diazoacetates, and diazomalonates (Table I). Ethyl and ten-butyl acetoacetate are converted to the corresponding a-diazoacetoacetates with saturated sodium carbonate as the aqueous phase. When aqueous sodium hydroxide is used with the acetoace-tates, the initially formed a-diazoacetoacetates undergo deacylation to the diazoacetates. Methyl esters are not suitable substrates, since they are too easily saponified under these conditions. [Pg.35]

The synthetic procedure used for the chemical modification of PPO involved in the first step the radical bromination of PPO methyl groups to provide a polymer containing bromobenzyl groups. The bromobenzyl groups were then esterified under phase-transfer-catalyzed (PTC) reaction conditions with potassium 4-(4-oxybiphenyl)butyrate (Ph3C00K, Ph3C00-PP0), potassium... [Pg.99]

The unique ability of crown ethers to form stable complexes with various cations has been used to advantage in such diverse processes as isotope separations (Jepson and De Witt, 1976), the transport of ions through artificial and natural membranes (Tosteson, 1968) and the construction of ion-selective electrodes (Ryba and Petranek, 1973). On account of their lipophilic exterior, crown ether complexes are often soluble even in apolar solvents. This property has been successfully exploited in liquid-liquid and solid-liquid phase-transfer reactions. Extensive reviews deal with the synthetic aspects of the use of crown ethers as phase-transfer catalysts (Gokel and Dupont Durst, 1976 Liotta, 1978 Weber and Gokel, 1977 Starks and Liotta, 1978). Several studies have been devoted to the identification of the factors affecting the formation and stability of crown-ether complexes, and many aspects of this subject have been discussed in reviews (Christensen et al., 1971, 1974 Pedersen and Frensdorf, 1972 Izatt et al., 1973 Kappenstein, 1974). [Pg.280]

Demercuration of organomercury compounds is a critical step in synthetic procedures, which involve mercuration-initiated cyclization reactions [e.g. 41], Many of the standard procedures for demercuration result in rearrangement or ring cleavage of the system, but reductive carbon-mercury cleavage (e.g. Scheme 11.4) with an excess of the quaternary ammonium borohydride is effective under phase-transfer conditions [e.g. 42,43]. [Pg.487]

The preparation of novel phase transfer catalysts and their application in solving synthetic problems are well documented(l). Compounds such as quaternary ammonium and phosphonium salts, phosphoramides, crown ethers, cryptands, and open-chain polyethers promote a variety of anionic reactions. These include alkylations(2), carbene reactions (3), ylide reactions(4), epoxidations(S), polymerizations(6), reductions(7), oxidations(8), eliminations(9), and displacement reactions(10) to name only a few. The unique activity of a particular catalyst rests in its ability to transport the ion across a phase boundary. This boundary is normally one which separates two immiscible liquids in a biphasic liquid-liquid reaction system. [Pg.143]

Phase transfer catalysis (1,2) has become in recent years a widely used, well-established synthetic technique applied with advantage to a multitude of organic transformations. In addition to a steadily increasing number of reports in the primary literature, there are several reviews (3-6), comprehensive monographs (7-10) and an ACS Audio Course (1 ) which describe the phase transfer process and which provide extensive compilations of phase transfer agents and reaction types. While the list of applications and in many cases the synthetic results are impressive, phase transfer catalysts (PTCs) suffer some of the same disadvantages as more conventional hetero-and homogeneous catalysts — separation and... [Pg.169]

Keller, W. E. Ed., "Compendium of Phase-Transfer Reactions and Related Synthetic Methods," Fluka AG, CH-9470 Buchs, Switzerland, 1979. [Pg.183]

Several phosphines with crown ether substituents were synthetized in order to accelerate reactions catalyzed by their (water-insoluble) Rh(I) complexes by taking advantage of a built-in phase-transfer function [66,67]. Indeed, hydrogenation of Li-, Na-, K- and Cs-cinnamates in water-... [Pg.64]

One of the early examples for organocatalysis is the asymmetric Weitz-Scheffer epoxidation of electron-deficient olefins, which can be effected either by organic chiral phase transfer catalysts (PTC) under biphasic conditions or by polyamino acids. This reaction has gained considerable attention and is of great synthetic use. [Pg.370]


See other pages where Reactions phase-transfer synthetic is mentioned: [Pg.330]    [Pg.89]    [Pg.133]    [Pg.353]    [Pg.254]    [Pg.36]    [Pg.52]    [Pg.361]    [Pg.345]    [Pg.227]    [Pg.234]    [Pg.103]    [Pg.48]    [Pg.171]    [Pg.184]    [Pg.233]    [Pg.1]    [Pg.168]    [Pg.365]    [Pg.418]    [Pg.100]    [Pg.99]    [Pg.27]    [Pg.35]    [Pg.257]    [Pg.152]    [Pg.149]    [Pg.398]    [Pg.362]    [Pg.448]    [Pg.353]    [Pg.27]    [Pg.49]   
See also in sourсe #XX -- [ Pg.330 ]




SEARCH



Phase-transfer reactions

Synthetic phases

Synthetic reactions

© 2024 chempedia.info