Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Deacylation reactions

An Organic Syntheses preparation of 4-nitroindole may involve a related reaction. The condensation occurs in the presence of diethyl oxalate which may function by condensation at the methyl group. If this is the case, it must subsequently be lost by deacylation[17]. [Pg.29]

The Japp-Klingeraann coupling of aryidiazonium ions with enolates and other nucleophilic alkenes provides an alternative route to arylhydrazones. The reaction has most frequently been applied to P-ketoesters, in which deacylation follow S coupling and the indolization affords an indole-2-carboxylate ester. [Pg.65]

In addition to formation from a ketone, the hydra2ones can be obtained from dicarbonyl compounds by a Japp-Klingemann reaction. This is especially useful for P-ketoesters and P-ketoacids, which undergo either deacylation or decarboxylation. [Pg.86]

In the olivanic acid series of carbapenems the ( )-acetamidoethenyl grouping can be isomerised to the (Z)-isomer (19) (22) and reaction with hypobromous acid provides a bromohydrin that fragments to give a thiol of type (20) when R = H, SO H, or COCH. The thiol is not isolated but can react to provide new alkyl or alkenyl C-2 substituents (28). In the case of the nonsulfated olivanic acids, inversion of the stereochemistry at the 8(3)-hydroxyl group by way of a Mitsunobu reaction affords an entry to the 8(R)-thienamycin series (29). An alternative method for introducing new sulfur substituents makes use of a displacement reaction of a carbapenem (3)-oxide with a thiol (30). Microbial deacylation of the acylamino group in PS-5 (5) has... [Pg.5]

The transformations described thus far were catalyzed by enzymes in their traditional hydrolytic mode. More recent developments in the area of enzymatic catalysis in nonaqueous media (11,16,33—35) have significantly broadened the repertoire of hydrolytic enzymes. The acyl—enzyme intermediate formed in the first step of the reaction via acylation of the enzyme s active site nucleophile can be deacylated in the absence of water by a number of... [Pg.334]

Reactions with carbon nucleophiles, e.g. from ketones (73CR(C)(277)703, 74CR(C)(278)427), are sometimes accompanied by deacylation in situ to give alkyl derivatives, e.g. (106)... [Pg.214]

Deacylations are known. C-Acyl groups in 1,3,4-thiadiazoles are cleaved by sodium ethoxide in ethanol (68AHC(9)165). Imidazole-2-carbaldehyde behaves similarly, yielding imidazole and ethyl formate this reaction involves an ylide intermediate. 3-Acylisoxazoles (405) are attacked by nucleophiles in a reaction which involves ring opening (79AHC(25)147). [Pg.93]

Imidazole-4-carbaldehyde, 5-mercapto-1 -phenyl-reactions, 5, 444 Imidazolecarbaldehydes oxidation, 5, 437 Imidazole-2-carbaldehydes condensation reactions, 5, 436 deacylation, 5, 93 decarbonylation, 5, 436 oximes, 5, 436 reactions, 5, 93... [Pg.654]

Imidazole-5-thione, 4,4-diphenyl-tautomerism, 5, 368 3 H-Imidazole-2-thione, 1,3-dimethyl-structure, 5, 367 Imidazole-2-thiones acidity, 5, 367 betaines, 5, 372 synthesis, 5, 481 tautomerism, 5, 367 3H-Imidazole-2-thiones synthesis, 5, 473, 6, 992 Imidazolides deacylation, 5, 453 mass spectra, 5, 360 phosphoric acid reactions, 5, 454 reactions, 5, 451-453 Imidazolidine, l-alkyl-3-phenyl-N-oxidation, 5, 427 Imidazolidine, 1,3-benzyl-2-phenyl-oxidation, S, 427... [Pg.657]

The hydroxy group undergoes 0-acylation and deacylation (79JHC689). These reactions of functionalized hydroxyfurazans are valuable methods for modification of these compounds. Thus, hydroxybifurazan 248 was aroylated with benzoyl chloride in the presence of pyridine with concomitant cleavage of the unsubstituted furazan ring to give nitrile 262 (Scheme 170) (75LA1029). [Pg.151]

Finally, attachment of a rather complex side chain to the para position of the benzene ring on the sulfonamide leads to the very potent, long-acting oral antidiabetic agent, glyburide (215). Preparation of this compound starts with the chlorosul-fonation of the acetamide of 3-phenethylamine (209). The resulting sulfonyl chloride (210) is then converted to the sulfonamide (211) and deacylated (212). Reaction with the salicylic acid derivative, 213, in the presence of carbodiimide affords the amide, 214. Condensation of that with cyclohexylisocyanate affords glyburide (215). ... [Pg.139]

Enantioselective deacylation of esters in micellar reactions has been extensively studied in order to understand enzyme stereospedficity, and some micellar systems... [Pg.166]

Figure 13 indicates burst kinetics. As discussed before, such biphasic curves indicate the reaction to occur through two steps involving an acylated intermediate. The initial slopes for the presteady state can be taken as the measure of acylation rates, and the slopes of the later straight line for steady-state can be taken as the measure of deacylation rates. [Pg.170]

Table 12. Enantioselectivities in the acylation and deacylation steps in the burst kinetics of the reaction of (Z)-Phe-PNP(52)... Table 12. Enantioselectivities in the acylation and deacylation steps in the burst kinetics of the reaction of (Z)-Phe-PNP(52)...
The kinetics of deacylation of 2,4-6-trimethyl, 2,4,6-triethyl and 2,4,6-tri-wo-propylbenzaldehyde have been determined over a wider acid range (50-100 wt. % sulphuric) than used in the above study, the reaction rates being determined either by a spectrophotometric or gasometric method, the latter being suitable here... [Pg.318]

When the reaction between a-trifluoromethyl sulfone 286 and paraformaldehyde was carried out in the presence of potassium carbonate, the vinyl sulfone was obtained quantitatively upon elimination of triflate anion368. Such a deacylative methylenation was observed in the reaction between /J-ketosulfones 287 and 288 and paraformaldehyde3 69 3 71. [Pg.639]

The first step, which is called the acylation reaction, involves a formation of an acyl-enzyme where the RC(0 )X group is covalently bound to the specially active serine residue and the XH group is expelled from the active site. The second step, which is called the deacylation step, involves an attack of an HY group on the acyl-enzyme. Here we concentrate on the acylation step which is the reverse of the second step when X and Y are identical. [Pg.171]

The diazo transfer reaction between p-toluenesulfonyl azide and active methylene compounds is a useful synthetic method for the preparation of a-diazo carbonyl compounds. However, the reaction of di-tert-butyl malonate and p-toluenesulfonyl azide to form di-tert-butyl diazomalonate proceeded to the extent of only 47% after 4 weeks with the usual procedure." The present procedure, which utilizes a two-phase medium and methyltri-n-octylammonium chloride (Aliquat 336) as phase-transfer catalyst, effects this same diazo transfer in 2 hours and has the additional advantage of avoiding the use of anhydrous solvents. This procedure has been employed for the preparation of diazoacetoacetates, diazoacetates, and diazomalonates (Table I). Ethyl and ten-butyl acetoacetate are converted to the corresponding a-diazoacetoacetates with saturated sodium carbonate as the aqueous phase. When aqueous sodium hydroxide is used with the acetoace-tates, the initially formed a-diazoacetoacetates undergo deacylation to the diazoacetates. Methyl esters are not suitable substrates, since they are too easily saponified under these conditions. [Pg.35]

Treatment of 51 with an excess of sodium benzoate in DMF resulted in substitution and elimination, to yield the cyclohexene derivative (228, 36%). The yield was low, but 228 was later shown to be a useful compound for synthesis of carba-oligosaccharides. <9-Deacylation of228 and successive benzylidenation and acetylation gave the alkene 229, which was oxidized with a peroxy acid to give a single epoxide (230) in 60% yield. Treatment of 230 with sodium azide and ammonium chloride in aqueous 2-methoxyeth-anol gave the azide (231,55%) as the major product this was converted into a hydroxyvalidamine derivative in the usual manner. On the other hand, an elimination reaction of the methanesulfonate of 231 with DBU in toluene gave the protected precursor (232, 87%) of 203. [Pg.56]

Reaction 3 is analogous to the dehydrogenation of fatty acyl-CoA thioesters (see Figure 22—3). In isovaleric acidemia, ingestion of protein-rich foods elevates isovalerate, the deacylation product of isovaleryl-CoA. Figures 30-20, 30-21, and 30-22 illustrate the subsequent reactions unique to each amino acid skeleton. [Pg.259]


See other pages where Deacylation reactions is mentioned: [Pg.208]    [Pg.250]    [Pg.46]    [Pg.443]    [Pg.208]    [Pg.250]    [Pg.46]    [Pg.443]    [Pg.298]    [Pg.311]    [Pg.22]    [Pg.85]    [Pg.526]    [Pg.293]    [Pg.311]    [Pg.314]    [Pg.240]    [Pg.349]    [Pg.147]    [Pg.150]    [Pg.165]    [Pg.172]    [Pg.14]    [Pg.171]    [Pg.316]    [Pg.317]    [Pg.319]    [Pg.476]    [Pg.31]    [Pg.141]    [Pg.182]    [Pg.151]    [Pg.96]   
See also in sourсe #XX -- [ Pg.96 ]




SEARCH



Acylation and Deacylation Reactions

Deacylation

Deacylation reactions, catalyzed with

Deacylation-reacylation reactions

© 2024 chempedia.info